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Abstract—Diffusion models have demonstrated promising po-
tential in recommender systems owing to their powerful gen-
erative ability. However, due to the inherent sparse nature of
real-world recommendation data and the inconsistency in the
variation of reconstruction and ranking losses during training,
existing works suffer two issues: 1) Randomly sampled Gaussian
noise addition tends to obscure original user preferences. 2)
Training for generation and preference learning tasks interferes
with each other, limiting the generative ability of the model. To
address these issues, we propose SimDiff, a simple and novel
diffusion-based recommendation framework. For the first issue,
instead of using random Gaussian noise, we leverage rich seman-
tic information by incorporating auxiliary signals from text or
image modalities to enhance the input data of denoising model. In
response to the second issue, based on a comprehensive analysis of
the mutual influence between generation and preference learning
in diffusion recommender systems, we build a collaborative
training objective strategy to transform the interference between
them into mutual collaboration, which jointly enhances the model
training effectiveness. Additionally, we employ multiple GCN
layers only during inference to incorporate higher-order co-
occurrence information while maintaining training efficiency.
Extensive experiments on four real-world datasets demonstrate
that SimDiff significantly outperforms state-of-the-art methods.
Our SimDiff offers a simple yet effective solution for enhancing
recommendation performance and suggests a novel paradigm for
applying diffusion method in recommender systems.

Index Terms—Collaborative Filtering, Generative Recom-
mender Model, Diffusion Model.

I. INTRODUCTION

In the age of data explosion, recommender systems have
become crucial for managing the exponential growth of in-
formation. As the volume of user interaction data continues
to grow, there is an increasing demand for recommender
systems to effectively extract potential user preferences. In
recent years, generative models have attracted considerable
attention from the research community due to their impressive
ability to model complex data distributions and generate highly
realistic outputs [1]–[10]. Among various generative models,
diffusion models have emerged as a particularly advantageous
paradigm for their exceptional performance in capturing data
distributions [11]–[20].

Diffusion-based models have showcased their promising
potential in recommendation and achieved some progress.
One notable work is DiffRec [21], which applies the diffu-
sion paradigm directly to user-item interaction graphs. This
model implements a training process that involves adding
and removing noise from the graph. During inference, it
treats the original interaction graph as noisy data and per-
forms denoising to generate predictions. In the domain of se-

quence recommendation, DreamRec [22] proposes a learning-
to-generate paradigm that firstly constructs guidance represen-
tations, which are then leveraged for generating an oracle item
to depict the true preference of the user directly. Recently,
DDRM [23] presents a model-agnostic diffusion framework
that first employs a backbone model to train representations,
then facilitates bidirectional guidance between users and items,
while CF-Diff [24] adapts diffusion with a forward process
smoothing item-item similarity. Beyond these, other works
[25]–[29] explore diffusion techniques and further enrich the
landscape of diffusion-based recommendation research.

Despite the progress made by existing diffusion-based
recommendation models, several limitations remain. Current
methods primarily adopt a straightforward transfer of diffu-
sion paradigm from image synthesis, simply combining the
reconstruction and BPR losses to train the generation and
preference learning tasks, wherein the original interaction
or item representations undergo randomly sampled Gaussian
noise corruption. However, due to the inherently highly sparse
recommendation data in the real world and the inconsistency
in the objectives of reconstruction and ranking losses during
training, this paradigm faces two critical issues when applied
to recommendation scenarios:

• The destruction of interaction information by random
Gaussian noise: The key of dealing with user-item in-
teraction data is ensuring the preservation of the valuable
information inherent in these interactions. However, when
randomly sampled Gaussian noise is directly added into the
user-item interaction graph or representations, it introduces
perturbations that do not align with the original data struc-
ture. Since Gaussian noise is uncorrelated with the actual
interactions, it distorts the true relationships between users
and items, thus aggravating the sparsity challenge inherent
in the raw data.

• The inconsistency between generation and preference
learning objectives harms the generative ability: The
objective of the BPR loss is to uncover users’ underlying
preferences, whereas the generation process seeks to recover
representations to their original states. This divergence in
objectives prevents the model from fully leveraging the
generative and generalization capabilities of the diffusion
paradigm. Existing models overlook this mismatch and
simply combine the two objectives together, which hinders
the model’s ability to effectively align user preferences
through generation.

To address the aforementioned challenges, we investigate
the diffusion paradigm on recommender systems and make
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some novel modifications. Regarding the first issue, instead
of employing randomly sampled Gaussian noise, we incorpo-
rate auxiliary information derived from text and image modal-
ities, which are rich in semantic and contextual information.
Specifically, we directly combine the auxiliary information
and item representations using weighted aggregation, and
feed the result into the generation process for denoising and
generation. This not only injects semantic features into sparse
interaction data to enrich its information, but also leverages the
subsequent denoising process to eliminate the noise contained
in these auxiliary signals, ultimately generating representations
that capture users’ authentic preferences. As for the second
issue, after conducting thorough investigations and experi-
ments, we propose a collaborative training objective strategy
based on normalization techniques to harmonize generation
and preference learning. Our intuition is to allow the diffusion
generation process and preference ranking to complement each
other and optimize jointly, ultimately generating item represen-
tations that capture authentic user preferences. Additionally,
we only utilize multiple GCN layers in the inference phase
to further incorporate higher-order co-occurrence information,
which eliminates the need for convolution operations during
training, thereby significantly improving efficiency.

In this paper, we propose a simple and effective diffusion
based model called SimDiff, which enhances semantic infor-
mation of latent variables by injecting auxiliary signals to
item representations. To collaborate generation and preference
learning, we use a collaborative training objective based on
the normalization technique. Multiple GCN layers are only
used during inference to capture higher-order co-occurrence,
eliminating convolution operations in training and boosting
efficiency. Extensive experiments on five datasets verify the
superiority of our SimDiff model. Our contributions can be
summarized as follows.

• We propose a novel generative framework that substantially
modifies the diffusion paradigm to address the sparsity of
recommendation data as well as the mutual interference
between existing training objectives.

• We introduce an auxiliary signal containing semantic in-
formation extracted from various modal features, instead
of corrupting interactions with randomly sampled Gaussian
noise, thereby enabling the model to excavate authentic user
preferences within latent variables enriched with abundant
item features.

• Based on extensive investigation and experiments, we build
a novel collaborative training objective strategy which trans-
forms the interference between generation and preference
learning into mutual collaboration, thereby substantially
improving the model’s learning ability and adaptability.

• We conduct evaluations on five real-world interaction
datasets. Results show that our model significantly outper-
forms other baseline methods. Apart from this, we also
perform signal-to-noise ratio (SNR) analysis, visualization
of loss curves variation to illustrate the superiority and
interpretability of SimDiff.

II. RELATED WORK

A. Collaborative Filtering

Research in recommender systems began in the 1990s with
content-based and collaborative filtering approaches, with a
major shift during the Netflix Prize competition that estab-
lished matrix factorization (MF) techniques [30]–[32] as the
dominant models between 2008 and 2016. While MF methods
captured preference patterns via latent factors, they struggled
with data sparsity and non-linear relationships, leading to the
development of Neural Collaborative Filtering (NCF) [33],
which utilized deep neural networks for more complex user-
item interactions. The field evolved further with Graph Neural
Network (GNN) approaches, starting with Neural Graph Col-
laborative Filtering (NGCF) [34], which encoded collaborative
signals through message passing but faced complexity and
over-smoothing. A breakthrough came with LightGCN [35],
which simplified graph convolution operations by showing that
basic neighborhood aggregation, without feature transforma-
tion and non-linear activation, effectively captured collabora-
tive signals while reducing computational complexity.

Recent advances in recommender systems focus on con-
trastive methods for enhanced representation learning. This
started with SimCLR [36] in computer vision, adapted
for recommendation tasks. Self-supervised Graph Learning
(SGL) [37] introduced data augmentation techniques like
node dropout, edge dropout, and random walks to create
diverse views of the user-item graph. Neighbor Contrastive
Learning (NCL) [38] advanced this by using a neighbor-
based contrastive objective for more nuanced negative sam-
pling. Recent models like SCCF [39] unify graph convolution
with contrastive learning, while RGCL [40] uses adversarial
perturbations for a balance between contrastive hardness and
rationality. RecDCL [41] combines batch-wise and feature-
wise contrastive objectives in a dual framework.

B. Diffusion Based Recommendation

Diffusion models have achieved remarkable success since
DDPM [42], which established the foundational framework
for learning data distributions through iterative Gaussian noise
addition and denoising. Subsequent improvements focused on
enhancing sampling efficiency and flexibility. For instance,
non-Markovian processes [43] introduced accelerated sam-
pling by redefining the diffusion trajectory, while conditional
generation techniques [44] enabled precise control over out-
put characteristics through auxiliary inputs like class labels
or textual prompts. These innovations laid the groundwork
for adapting diffusion principles to data in recommendation
scenarios.

In recommender systems, DiffRec [21] pioneered this adap-
tation by reformulating the generation of user-item interaction
graphs as a denoising process. DreamRec [22] integrated
sequential user histories into the diffusion framework, em-
ploying time-aware reweighting to emphasize recent interac-
tions and model evolving preferences. Recent advancements
explore sophisticated conditioning mechanisms and physical-
inspired paradigms. DDRM [23] introduced mutual condi-
tioning between users and items during the reverse diffusion
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Fig. 1: Visualization of the item embeddings on Tiktok dataset
using T-SNE.

process, enabling simultaneous refinement of both entities’
representations through shared gradient updates. Meanwhile,
GiffCF [25] reinterpreted diffusion as a graph heat equation
simulation, propagating user-item affinity signals across the
interaction graph’s Laplacian matrix. These works highlight
the potential of diffusion models in modeling complex user-
item interactions.

III. INVESTIGATION OF DIFFUSION-BASED
RECOMMENDER SYSTEMS

A. Comparison between Noise Addition and Auxiliary Signal
Injection

In order to investigate the corruption of co-occurrence
relationships in recommendation data caused by randomly
sampled Gaussian noise, as well as validating the effectiveness
of auxiliary semantic signal injection proposed in our SimDiff,
we design three kinds of item representations and visualize
them using t-SNE for intuitive observation of data distribu-
tions. Specifically, we first obtain item representations through
LightGCN pre-training on the Tiktok dataset, and then define
three variants based on the representations: 1) pre-trained item
embeddings that only preserve co-occurrence relationships; 2)
representations corrupted by random Gaussian noise; and 3)
latent variables obtained through auxiliary signal injection.
The second and third variants represent the input data of
denoising models in traditional diffusion paradigms and our
SimDiff, respectively.

As shown in Figure 1, the item embeddings pre-trained by
LightGCN demonstrate a gradual trend toward homogeneous
distribution. However, due to the sparsity of original interac-
tion data, this even spread remains limited, with numerous
clustered item representations still present. The noise corrup-
tion results in items becoming crowded in limited discrete re-
gions of the item space, making them indistinguishable, further
intensifying the model’s difficulty in capturing inherent user
preferences. In stark contrast, after auxiliary signal injection
in SimDiff, the embeddings exhibit a more balanced spatial
arrangement. This empirical observation strongly suggests that
introducing noise to inherently sparse recommendation data
significantly disrupts the original interaction patterns, indicat-
ing that the forward process of traditional diffusion paradigm
is inadequate for handling recommendation scenarios.
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Fig. 2: Comparison between reconstruction and BPR losses in
DDRM

B. Comparison of Reconstruction and BPR Losses During
Training

To investigate the objective discrepancy between genera-
tive modeling and preference learning during the training of
diffusion-based models, we collected the reconstruction loss
and BPR loss at each training epoch of the DDRM model and
visualized them, as shown in Figure 2.

From Figure 2, we can have two observations: (1) There
is a substantial gap between the two loss terms, with the
reconstruction loss reaching up to ten times that of the BPR
loss; (2) Both losses converge within relatively few training
iterations. These findings indicate that there is severe mutual
interference between the two objectives. The significantly
larger magnitude of the reconstruction loss diminishes the
influence of the BPR loss during gradient descent. Moreover,
the sparsity of the data limits the amount of information that
the BPR loss can capture, causing it to converge rapidly. As a
result, the representations change less over time, leading to a
rapid convergence of the reconstruction loss as well, thereby
constraining the model’s generative ability. Similar issues can
also be observed in the experiments in Section VI-E.

C. Impact of Learning Objectives on Diffusion Model’s Gen-
erative Ability

In this subsection, we investigate the impact of model’s
learning ability and generative performance imposed by learn-
ing objectives. We select diffusion-based recommender sys-
tems CF-Diff, DDRM and DiffRec for comparison with our
SimDiff framework on the Tiktok and Taobao dataset. To
ensure fairness, we calculate the percentage of changes in
generated results for each epoch compared to the previous
one, which can be formulated as follows:

Pt =
1

|Nr|

Nr∑
i=1

|ri,t − ri,t−1|
|ri,t−1|

, (1)

where r represents an individual element from the interaction
matrix or item embedding, Nr denotes the total count of
elements, and t indicates the current training epoch.
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Fig. 3: The percentage of changes in generative outcomes.

It is evident that the percentage of changes for CF-Diff,
DiffRec and DDRM remains consistently small and gradually
decreases over time, whereas SimDiff maintains a significantly
higher level of change throughout. We can clearly observe that
the curve of SimDiff exhibits approximately periodic fluctua-
tions, indicating that our framework continuously acquires new
information through collaborative training objective strategy.
Moreover, the overall performance results in Section VI-B
further confirm that SimDiff achieves significantly superior
generative performance compared to the other three models.
This observation reveals that the interference between gen-
eration and preference learning significantly limit the model’s
continuous learning capabilities, as their training objectives are
inconsistent. Conversely, our proposed collaborative training
objective strategy effectively transforms the conflict between
the two into synergy, enabling continuous learning of the
user’s true preferences and improving the model’s generation
performance.

IV. PROBLEM DEFINITION

• Collaborative Graph with Auxiliary Signal. Consider the
input of a recommender system as a binary interaction graph
G = (U ∪ I, E), where U = {u1,u2, ...,uM} represents the
set of users and I = {i1, i2, ..., iN} represents the set of
items. The edge set E contains edges between users and items,
where an edge (um, in) ∈ E indicates an observed interaction
between user um and item in. We can represent the user-
item interactions through an adjacency matrix A ∈ RM×N ,
M and N denote the number of users and items. The element
Amn equals 1 if there exists an interaction between user um

and item in, and 0 otherwise. Furthermore, to incorporate
rich semantic information to guide the generation process,
we introduce the auxiliary signals Ĝ extracted from modal
features F̂.
• Task Formulation. Given this graph, our objective is to
learn a function f that predicts the likelihood of future
interactions between users and items. For each user um,
we aim to generate a personalized ranking of previously
uninteracted items {in|(um, in) /∈ E} based on the predicted
scores. The function f takes the input of an interaction graph
with auxiliary signal GA = (G, {ĝi|i ∈ I}), formulated as
ŷu = f(GA).

V. METHODOLOGY

In this section, we present our SimDiff, which consists of
training and inference phase. During the training phase, we

inject dimensionally-aligned auxiliary information into item
representations to enrich their semantic space, treating it as
semantically rich noise. After that, we develop a collaborative
training objective strategy that continually optimizes the BPR
loss while learning the generation process. In the inference
phase, after generating item representations, we leverage the
LightGCN paradigm to introduce higher-order co-occurrence
information, further enhancing the recommendation task per-
formance. We detail each component in the following subsec-
tions.

A. Signal Alignment Process
The auxiliary signal, which carries rich semantic infor-

mation, can be derived from various modalities associated
with items, such as user-generated textual reviews, product
descriptions, or visual content in the form of item images.
Specifically, we first extract the item modal features f̂i ∈ Rdm

by employing different approaches based on the type of modal-
ity. For textual data, we utilize a pre-trained Sentence-BERT
model as the feature encoder, while for image data, we directly
extract the visual features from the raw dataset. Subsequently,
to ensure dimensional compatibility and enhance the feature
representation, we transform these features through a Multi-
Layer Perceptron (MLP) architecture to generate the guide
signal ĝi ∈ Rd. This transformation can be formulated as
follows:

ĝi = MLP(f̂i; θ), (2)

where θ represents the learnable parameters of the MLP net-
work, and i denotes the i-th item. This architectural design en-
sures that the guide signal maintains dimensional consistency
with the target space while effectively capturing the essential
preference-related information from the input features.

B. Training Phase
In order to better understand personalized user preferences

for items and capture latent co-occurrence patterns, we propose
a novel representation generation approach. Our key insight
is that generating item embeddings directly offers a more
comprehensive solution.

1) Auxiliary Semantic Signal Injection:
Considering that user-item interactions typically lack semantic
content, we introduce modal signals as auxiliary information
and consider them as another form of noise. We synthesize
two key information sources: the co-occurrence patterns em-
bedded within user-item interactions and the semantic features
extracted from auxiliary signals. Our method combines ini-
tialized item embeddings with aligned guide signals through
a designed integration process. Specifically, we merge its
embedding vector Ei with the corresponding guide signal Ĝ
(stacked by ĝi) through a weighted fusion operation to obtain
the latent variable XT as follows:

XT = Ei ∗ ψ + Ĝ ∗ (1− ψ), (3)

where ψ denotes the ratio of combination. This fusion ap-
proach preserves both the co-occurrence patterns captured in
the item embeddings and the semantic features encoded in the
guide signals, while avoiding the potential information loss
that would result from noise addition.
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Fig. 4: The overall architecture of our proposed SimDiff, which involves injecting rich semantic information derived from text
or image modalities into item representations. Item representations are iteratively updated while guiding the generation process
to excavate authentic user preferences. The collaborative training objective strategy continuously optimizes generation and
preference learning tasks. During inference, the LightGCN paradigm is incorporated to enhance representations with higher-
order co-occurrence information, improving training efficiency by avoiding GCN during the training phase.

2) Denoising and Preference Mining Process:
Although auxiliary signals in recommender systems contain
rich semantic information, not all of them directly reflect au-
thentic user preferences. A substantial portion consists of user
preference-irrelevant information that can be treated as noise.
In response, we leverage the diffusion reverse paradigm as an
effective mechanism to remove such noise while preserving
the essential preference signals.

In detail, we initialize the item representations Ei, and
employ an MLP structure as denoising model to process latent
variables and generate item embeddings. The process is as
follows:

XT−1 =MLP (Concat[XT , Ĝ,PT ]), (4)

where XT ∈ RN×d is the latent variable, Ĝ ∈ RN×d is the
guide signal, PT ∈ RN×dt is the time positional encoding at
time step T , XT−1 ∈ RN×d is the denoising result of T − 1
step.

Following the reverse process in existing diffusion
paradigm, we finally generate the item embeddings X̂θ. Given
the parameters θ of model, we define ei to denote the recovery
target of item i, the t-th learning objective is:

Lt−1 =

NI∑
i=1

DKL(q(xi,t−1|xi,t, ei)||pθ(xi,t−1|xi,t, ĝi)). (5)

3) Collaborative Training Objective Strategy:
The incorporation of auxiliary information enriches the gen-

eration process with semantic content. However, since the
item representations are trained from initialization, they lack
co-occurrence relationships. To integrate user-item interaction
patterns while training the generative model, we design a
collaborative training objective strategy. Our intuition is to
introduce co-occurrence relationships into the generation of
item representations. Through the diffusion paradigm, we in-
tegrate co-occurrence relationships with semantic information

to obtain representations that encapsulate authentic user prefer-
ences. In the practical implementation, one of the formulations
can be described as:

Lr =

N∑
i=1

∥ei − fθ(xi,t, ĝi,Pt)∥2 . (6)

The loss term of reconstruction, denoted as Lr, regulates the
evolutionary trajectory of the latent variable XT toward the
authentic user preference.

We employ the Bayesian Personalized Ranking (BPR) loss
as our secondary loss term Lbpr. The BPR loss effectively cap-
tures pairwise relationships between items, enabling the model
to learn from implicit feedback and establish meaningful user-
item associations. The BPR loss term Lbpr is described as
follows:

Lbpr = −
M∑
u=1

∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ŷuj). (7)

• Dual-Objective Collaboration. In the practical imple-
mentation, we observe an increasing divergence between re-
construction loss and BPR loss with the training progress,
which adversely affects the model’s generative capabilities.
To further enhance our model’s performance and stability, we
introduce the dual-objective collaboration loss Lc that specif-
ically addresses the generation process. This supplementary
loss is motivated by a critical observation: there exists a
substantial difference between our latent variable xT and the
dynamic target at the beginning of training phase. Without
proper constraints and control mechanisms, this discrepancy
could potentially lead to unstable and uncontrolled generation.
Inspired by the efficiency of regularization loss, we finally
adopt the two-paradigm number to constrain the generative
outcomes, the loss Lc can be formally expressed through the
following mathematical equation:

Lc =
1

N
∥X̂θ∥2 =

1

N

(∑
i

|xθ
i |2
)1/2

. (8)
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TABLE I: The comparison of analytical time complexity.
Component LightGCN SGL

Adjacency Matrix O(2|E|) O(4ρ̂|E|s+ 2|E|)

Graph Convolution O(2|E|Lds |E|
B

) O(2(1 + 2ρ̂)|E|Lds |E|
B

)

BPR Loss O(2|E|ds) O(2|E|ds)

Self-supervised Loss - O(|E|d(2 +M +N)s)
O(|E|d(2 + 2B)s)

Component DiffRec SimDiff
Forward Process O(BNs) O(BDds)

Denoising Process O(kBHNs) O(kBHds)

BPR Loss - O(2|E|ds)
Reconstruction Loss O(BNs) O(Bds)

• Optimization. Additionally, we introduce a regularization
loss term that serves to constrain the model parameters,
preventing overfitting and ensuring stable convergence during
the optimization process.The regularization loss term Lreg is:

Lreg = ∥Θ∥22. (9)

Here, Θ represents the learnable parameters of the model.
Taking into account the previously outlined definitions, the
consolidated optimization loss used in the training process for
recommendation tasks is represented by:

Lrec = α1Lbpr + (1− α1)Lr + α2Lreg + Lc. (10)

Hyperparameters α1 and α2 controlling the relative strengths
of the ranking and regularization terms.

C. Inference Phase

While the training phase optimizes the model to generate
final targets in a single step by leveraging temporal position
encoding, the inference phase implements a more fine-grained,
step-by-step generation process. Our intuition behind this
methodology lies in maximizing the generative potential of the
model. By allowing the model to incrementally restructure the
information arrangement within the latent variable terms, we
achieve two critical objectives: enhanced generation stability
and optimal output quality.

Following the generation of item embeddings during the in-
ference phase, we enhance the representation by incorporating
higher-order co-occurrence information through the LightGCN
paradigm. This facilitates feature propagation between gen-
erated item embeddings X̂θ and user embeddings Eu. The
process consists of two main steps: First, we process the
original interaction graph to obtain its normalized adjacency
matrix Āu,i. Subsequently, the final representations for users
Ou and items Oi are then obtained through multiple layers
of graph convolution operations performed on the normalized
adjacency matrix. The formulation is as follows:

Ou = Āu,∗H
u, Oi = Ā∗,iH

i, (11)

Āu,i =
Au,i√
|Nu||Ni|

. (12)

where Hu = Eu, Ou ∈ RM×d; Hi = X̂θ, Oi ∈ RN×d;
Āu,i ∈ RN×d, Nu and Ni denote the neighborhood set
of user u and item i in the interaction graph. To obtain

the final recommendation predictions, we compute the dot
product between the user and item final representations, which
produces a recommendation score for each user-item pair. This
score quantifies the predicted likelihood of interaction between
a given user and item, enabling us to generate personalized
recommendations by ranking items.

D. Discussion

1) Time Complexity Analysis:
In this subsection, we analyze and compare the computational
complexity of SimDiff with representative baseline methods
including GCN-based LightGCN, contrastive learning-based
SGL, and diffusion-based DiffRec. We first define |E| as the
number of edges in the user-item bipartite graph, M and N as
the number of users and items. Furthermore, let s denote the
number of epochs, B denote the size of each training batch,
d denote the embedding size, D denote the embedding size
of pre-trained modal feature, L denote the number of GCN
layers, k and H denote the layer and hidden size of denoising
model, ρ̂ = 1− ρ denote the keep probability of SGL. Based
on these definitions, we derive the following facts:
• Training Phase: We first reduce the dimensionality of

the preprocessed modality information using a linear layer,
which has a complexity of O(BDd). Subsequently, the
auxiliary signals are added to the item representations to ob-
tain the latent variables. These variables are then processed
through an MLP to execute the generation process, with
a complexity of O(kBHds). Given that our collaborative
training objective strategy simultaneously optimizes both
the BPR loss and the reconstruction loss, their respective
complexities are O(2|E|ds) and O(Nds).

• Inference Phase: Compared to the training phase, the
inference phase involves executing a multi-step denoising
process, which results in an additional factor of T being
multiplied to the MLP’s complexity. Therefore, the overall
complexity for the denoising process becomes O(TNHd).
Moreover, since the normalized adjacency matrix has al-
ready been generated during the data preprocessing stage,
this computation is excluded from the actual model training
or testing time.
We summarize the time complexity in training of SimDiff

and other methods in Table I. We can clearly observe that
SimDiff exhibits marginally higher computational complexity
than LightGCN, while being substantially more efficient than
both SGL and DiffRec. SGL constructs normalized matrices
and performs graph convolution operations in each training
iteration and computing self-supervised losses, which signif-
icantly increases its computational complexity. DiffRec, on
the other hand, necessitates noise injection and denoising
operations across all items in each batch during training. By
eliminating the noise injection process and due to the fact that
the encoding dimension d << N , SimDiff achieves notably
lower computational complexity compared to DiffRec.

2) Interpretability Theoretical Analysis:
In this section, we further discuss the positive impact of replac-
ing noise addition with auxiliary semantic signal injection in
the model on generative capabilities. Additionally, we analyze
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the benefits of the collaborative training objective strategy for
model training through gradient analysis.
• SNR Analysis of the Generation Ability. In order to further
understand the benefits of auxiliary semantic signal injection
rather than noise addition in the recommendation scenario, we
conduct a theoretical analysis based on signal-to-noise ratio
(SNR).

The diffusion reverse process aims to recover x0 from xT .
In our approach, we inject modality-guided auxiliary signal
rather than Gaussian noise, which leads to a higher signal-to-
noise ratio (SNR) according to our visualization experiment
in Section VI-D. Below we provide a concise proof that high
SNR enhances the generative ability of the model. Using the
Linear Minimum Mean Square Error Estimator (LMMSE), we
model the noisy signal as:

xT = x0 +m = x0 + λ(γx0 + η) = (1 + λγ)x0 + λη, (13)

where x0 is the original signal, η is noise, γ controls alignment
between modality noise and original signal, and λ scales the
noise. For estimator x̂0 = AxT , the optimal coefficient A∗

minimizes mean square error:

A∗ =
(1 + λγ)Var(x0)

(1 + λγ)2Var(x0) + λ2Var(η)
. (14)

As noise variance approaches zero, A∗ → 1
1+λγ , making the

recovery:
x̂0 ≈ xT

1 + λγ
. (15)

In recommendation systems, the predicted score is:

r̂ui = u⊤x̂0, where x̂0 = fθ(xT ). (16)

With estimation error δ where x̂0 = x0 + δ, the prediction
error variance becomes:

Var[∆r] = u⊤Cov[δ]u, (17)

In high-SNR regimes where Cov[δ] is small, prediction
errors are reduced, leading to more reliable recommendations.
• Gradient Analysis of the Collaborative Training Objec-
tive Strategy. With this strategy, the gradient of the optimiza-
tion objective becomes:

∇θLtotal = ∇θLrecon + λ∇θLc + β∇θLBPR. (18)

The gradient of the Lc term is:

∇θLc = ∇θ∥fθ(XT )∥2 = 2fθ(XT ) · ∇θfθ(XT ). (19)

When ∥fθ(XT )∥ is large, the gradient of the Lc term, ∇θLc,
will also be large. This increases the penalty on the magnitude
of fθ(XT ), encouraging the model to generate embeddings
with smaller norms.

Let α = ∥fθ(XT )∥, β = ∥X0∥, and cos θ be the cosine
of the angle between the two. The reconstruction loss can be
written as:

Lrecon = α2 + β2 − 2αβ cos θ. (20)

When the term Lc = α2 is added, the model tends to reduce
α. When α is close to β, the reconstruction loss becomes:

Lrecon ≈ 2β2(1− cos θ). (21)

TABLE II: Statistics of the datasets

Datasets Office Tiktok Taobao Electronics

#Users 4,905 9,308 12,539 32,886
#Items 2,420 6,710 8,735 52,974
#Int. 53,258 68,722 83,648 337,837
Sparsity 99.55% 99.88% 99.92% 99.69%

TextDim 768 768 – 300
ImageDim 4096 4096 4096 4096

At this point, the reconstruction loss is mainly determined by
the directional difference cos θ, rather than the norm difference
of α and β. This makes the reconstruction objective more
consistent with the BPR objective, both focusing on the
direction of the representations rather than their magnitudes.
This alignment allows the model to simultaneously improve
both objectives in the same optimization direction, with the
two complementing each other, thereby enhancing the model’s
ability to accurately capture user preferences.

VI. EXPERIMENTS

A. Experimental Settings

1) Datasets:
We conduct experimental evaluations on four widely-used
public recommendation datasets: TikTok, Amazon-Office,
Amazon-Electronics, and Taobao. The details of each dataset
are shown in Table II.

2) Evaluation Metrics:
The effectiveness of our recommender system was measured
using Two standard ranking metrics: NDCG@K and Re-
call@K, where K represents the cutoff threshold for rec-
ommended items. We employed the all-rank item evaluation
strategy to access accuracy. Final performance metrics were
computed by averaging individual scores across all test users.

3) Baseline Models:
In our experiments, we conduct comprehensive performance
comparisons between our proposed framework SimDiff and
various existing methods. The baseline models include: (1)
classical collaborative filtering methods such as Matrix Factor-
ization (MF) [31] and the efficient neural matrix factorization
model ENMF [45]; (2) popular GNN-based models includ-
ing NGCF [33] and LightGCN [35]; (3) recently proposed
contrastive learning-based models that achieve high accuracy,
specifically SGL [37], NCL [38], SCCF [39], and LightGCL
[46]; and (4) state-of-the-art diffusion-based generative models
from the past two years, namely DiffRec [21], DDRM [22],
GiffCF [25], and CF-Diff [24].

4) Implementation Details:
All models maintain a uniform embedding dimension of
64, and the Xavier initialization method is applied to the
embedding parameters. The hyperparameter search space is
configured as follows: The learning rate is sampled logarithmi-
cally between 1e-6 and 5e-1. For batch size optimization, we
select different discrete values based on the interaction volume
of each dataset to ensure training efficiency (for instance,
choosing a batch size of 1024 for the TikTok dataset and
2000 for the Amazon-Office dataset). The reconstruction alpha



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE III: Overall performance comparison between the baselines and SimDiff with Recall@20, Recall@50, NDCG@20,
NDCG@50. Bold values indicate the optimal results, while underlined values represent the second-best results. Values marked
with * denote statistically significant improvements over the best baseline under single-sample t-test (p− value < 0.05). The
%Improv. illustrates the performance improvement of SimDiff compared to the best baseline model, represented by shaded
cells.

Method

TikTok Office Taobao Electronics
Recall NDCG Recall NDCG Recall NDCG Recall NDCG
@20 @20 @20 @20 @20 @20 @20 @20
@50 @50 @50 @50 @50 @50 @50 @50

MF 0.0557 0.0235 0.0598 0.0232 0.0556 0.0207 0.0401 0.0155
0.1046 0.0332 0.1178 0.0346 0.0983 0.0290 0.0620 0.0198

ENMF 0.1031 0.0395 0.1004 0.0500 0.1307 0.0630 0.0299 0.0139
0.1656 0.0527 0.1729 0.0651 0.1813 0.0731 0.0512 0.0183

NGCF 0.0628 0.0245 0.0928 0.0400 0.1223 0.0523 0.0368 0.0163
0.1166 0.0350 0.1684 0.0563 0.1902 0.0658 0.0593 0.0209

LightGCN 0.0907 0.0379 0.1215 0.0558 0.1502 0.0681 0.0394 0.0178
0.1471 0.0491 0.2064 0.0702 0.2250 0.0830 0.0645 0.0229

SGL 0.0798 0.0342 0.1151 0.0549 0.1555 0.0748 0.0359 0.0175
0.1308 0.0442 0.1838 0.0697 0.2107 0.0859 0.0561 0.0217

NCL 0.0898 0.0402 0.0966 0.0463 0.1558 0.0717 0.0435 0.0199
0.1447 0.0510 0.1595 0.0594 0.2372 0.0880 0.0679 0.0249

LightGCL 0.0911 0.0435 0.1180 0.0531 0.1463 0.0649 0.0379 0.0163
0.1190 0.0455 0.1942 0.0696 0.1986 0.0752 0.0528 0.0208

SCCF 0.0506 0.0216 0.1221 0.0520 0.1062 0.0540 0.0215 0.0103
0.0883 0.0291 0.1963 0.0644 0.1388 0.0605 0.0332 0.0127

DiffRec 0.1036 0.0446 0.1159 0.0511 0.1492 0.0715 0.0236 0.0123
0.1459 0.0536 0.1867 0.0704 0.2013 0.0824 0.0451 0.0189

DDRM-LightGCN 0.0145 0.0057 0.0133 0.0058 0.0139 0.0057 0.0033 0.0020
0.0218 0.0072 0.0277 0.0088 0.0228 0.0075 0.0044 0.0022

DDRM-SGL 0.0281 0.0105 0.0381 0.0156 0.0821 0.0380 0.0060 0.0024
0.0466 0.0147 0.0761 0.0237 0.1086 0.0433 0.0078 0.0028

CF-Diff 0.0665 0.0312 0.1028 0.0500 0.0529 0.0234 0.0099 0.0048
0.1112 0.0402 0.1755 0.0658 0.0731 0.0274 0.0192 0.0067

GiffCF 0.1185 0.0462 0.1252 0.0537 0.1524 0.0659 0.0343 0.0138
0.1687 0.0572 0.2084 0.0719 0.2084 0.0786 0.0509 0.0181

SimDiff 0.1348∗ 0.0588∗ 0.1361∗ 0.0606∗ 0.1893∗ 0.0783∗ 0.0498∗ 0.0217∗
0.1885∗ 0.0694∗ 0.2398∗ 0.0808∗ 0.2803∗ 0.0965∗ 0.0763∗ 0.0278∗

%Improv. 13.77% 27.33% 8.75% 8.60% 21.50% 4.68% 14.48% 9.05%
11.73% 21.37% 15.04% 12.38% 18.17% 9.66% 12.37% 11.65%

parameter α1, which controls the strength of the pairwise
ranking loss, is searched within the range of 0.5 to 1.0, while
the regularization alpha parameter α2 is explored between
0.001 and 0.01 to find the optimal regularization strength. The
number of GCN layers during the inference stage is tested with
varying configurations, ranging from 1 to 3 layers. For tem-
poral aspects, we investigate various timestep configurations
from 100 to 500. Finally, we compare the performance of two
optimizers: Adam and AdamW, both widely recognized for
their effectiveness in deep learning applications.

B. Performance Comparison

Table III presents a comparative analysis of our proposed
model against various baseline models across four datasets,
from which we can have following observations:
• Traditional matrix factorization models decompose user-

item interaction matrices to learn latent features but per-
form poorly by only considering direct interactions, miss-
ing higher-order relationships. GCN-based recommender
systems like NGCF and LightGCN improve by modeling
user-item interactions as bipartite graphs, capturing higher-
order connectivity for better representations. However, GCN
models may suffer from over-smoothing, making node rep-
resentations too similar. Contrastive learning alleviates this
by creating positive and negative sample pairs, maximizing

representation consistency for the same node across different
views while preserving node discrimination.

• Diffusion-based recommendation models like DiffRec and
GiffCF outperform other baseline methods by modeling
complex relationships between user behavior and item fea-
tures through noise addition and reverse process learning.
Their generative nature fosters diversity in recommenda-
tions, enabling content discovery. However, the noise from
random sampling can disrupt sparse interaction patterns, and
static response objectives limit their generative power.

• Our SimDiff outperforms other state-of-the-art models in
metrics across all datasets, achieving the best overall per-
formance. This highlights the effectiveness of incorporating
auxiliary information to build latent variables, which avoids
disruption from Gaussian noise while enriching represen-
tations with semantic information. Additionally, the col-
laborative training objective strategy transforms the mutual
interference between generation and preference learning
into collaboration, significantly improving generation per-
formance.

C. Ablation Analysis

Table IV presents the ablation study results. In this anal-
ysis, (G, I+G) denotes the variant where auxiliary signal
G serves as input data, while the fusion of auxiliary signal
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TABLE IV: Ablation analysis results
Method Metric TikTok Office Taobao Electronics

(G, I+G)

Recall@20 0.1219 0.1314 0.1456 0.0412
Recall@50 0.1909 0.2240 0.2341 0.0682
NDCG@20 0.0520 0.0549 0.0556 0.0183
NDCG@50 0.0660 0.0741 0.0732 0.0239

(G, I)

Recall@20 0.1204 0.1318 0.1453 0.0426
Recall@50 0.1903 0.2146 0.2415 0.0691
NDCG@20 0.0513 0.0518 0.0569 0.0191
NDCG@50 0.0655 0.0691 0.0760 0.0245

(I, I+G)

Recall@20 0.1206 0.1349 0.1669 0.0410
Recall@50 0.1909 0.2301 0.2519 0.0688
NDCG@20 0.0511 0.0553 0.0681 0.0184
NDCG@50 0.0653 0.0750 0.0850 0.0241

w/o modal

Recall@20 0.0955 0.1249 0.1781 0.0361
Recall@50 0.1328 0.2135 0.2680 0.0601
NDCG@20 0.0470 0.0494 0.0732 0.0146
NDCG@50 0.0542 0.0679 0.0911 0.0195

Pretrain

Recall@20 0.0899 0.1275 0.1775 0.0424
Recall@50 0.1449 0.2166 0.2581 0.0690
NDCG@20 0.0361 0.0587 0.0789 0.0185
NDCG@50 0.0469 0.0771 0.0949 0.0240

SimDiff

Recall@20 0.1348 0.1361 0.1893 0.0498
Recall@50 0.1885 0.2398 0.2803 0.0763
NDCG@20 0.0588 0.0606 0.0783 0.0217
NDCG@50 0.0694 0.0808 0.0965 0.0278

and item representation is utilized as the training target for
the generative process. The variants (G, I) and (G, I+G)
follow similar patterns. w/o modal denotes a variant that
does not utilize modality information. Instead, it follows the
conventional diffusion paradigm for noise addition. Pretrain
represents a variant where the generative process target is
replaced with pre-trained representations and only train the
denoising model.

The results demonstrate that SimDiff achieves superior
performance across almost all metrics, validating the efficacy
of our proposed paradigm. The variants (G, I+G), (G, I), and
(I, I+G) achieve competitive secondary results across metrics,
indicating their potential viability. These results substantiate
the effectiveness of incorporating auxiliary signals as enriched
semantic information.

Besides, when modality is not used as an auxiliary semantic
signal, its performance on most datasets is only slightly
better than that of the Pretrain variant. This suggests the
effectiveness of injecting modality information into the item
representation to enrich preference information, rather than
directly adding noise. Notably, when the generative target is
set to invariable pre-trained representations, we observe a sig-
nificant performance degradation. This finding highlights the
substantial utility of collaborative training objective strategy
in our framework. The empirical evidence strongly supports
the advantages of our approach in capturing authentic user
preference.

D. SNR Comparison Between Noise Addition and Semantic
Signal Injection

In this section, we evaluate the signal-to-noise ratio (SNR)
characteristics of two datasets, Taobao and Tiktok. The SNR
for each dataset is computed based on a standard statistical
definition, where SNR is formulated as the ratio between the
square of the mean and the variance of the random variable at
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Fig. 5: SNR comparison between noise addition and semantic
signal injection

each epoch. Specifically, for any random variable X , the SNR
is given by:

SNR(X) =
(E[X])2

Var(X)
, (22)

where E[X] denotes the expectation (mean) of X and Var(X)
represents its variance.

We plot the logarithm of the SNR values (log(SNR)) over
training epochs for both datasets, as shown in Figure 5. It
is evident that the SNR of latent variables injected with
auxiliary semantic signals is significantly higher than that
observed in the traditional diffusion paradigm with random
noise injection. This indicates that incorporating modality-
specific information into item representations substantially
enhances the informational content compared to the addition
of random noise.

E. Analysis of Collaborative Training Objective Strategy
In this subsection, we demonstrate the core idea of the col-

laborative training objective (CTO) strategy. We first present
a comparison of the results before and after incorporating the
dual-objective collaboration loss in Table V. It is evident that
the addition of this loss has a substantial impact on the model’s
performance, significantly enhancing its overall effectiveness.

Same as the existing diffusion models, the reconstruction
loss in SimDiff exhibits rapid convergence during the training
phase. As discussed in Section V-B3, we implement a collab-
orative training objective strategy to simultaneously optimize
both the generation process and recommendation task objec-
tives. The curves in Figure 6 show that our observations reveal
a disparity between the reconstruction loss and BPR loss as
training progresses. This divergence becomes so pronounced
that the reconstruction loss becomes negligible in comparison
to the total loss, halting the continued training of the de-
noising generative model. The visualization demonstrates the
remarkable effectiveness of incorporating the strategy. Before
its implementation, the two loss components differed greatly
in magnitude. With this loss integrated, the losses balanced
to similar values, allowing stable training of the denoising
model. This collaborative optimization approach significantly
enhances both the generative capabilities and overall model
performance, as evidenced by our experimental results.

F. Comparison with Multimodal Baselines
To further evaluate SimDiff’s ability to leverage modality

information, we compare its performance with several state-of-
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Fig. 6: Comparison of w/o CTO loss and SimDiff

TABLE V: Effectiveness of collaborative training objective
strategy

Dataset @K w/o CTO SimDiff

Recall NDCG Recall NDCG

TikTok @20 0.0899 0.0361 0.1348 0.0588
@50 0.1449 0.0469 0.1885 0.0694

Office @20 0.1275 0.0587 0.1361 0.0606
@50 0.2166 0.0771 0.2398 0.0808

Taobao @20 0.0592 0.0214 0.1893 0.0783
@50 0.1008 0.0297 0.2803 0.0965

Electronics @20 0.0022 0.0008 0.0498 0.0217
@50 0.0041 0.0012 0.0763 0.0278

the-art multimodal recommender systems, including MMSSL
[47], LATTICE [48], BM3 [49], LGMRec [50], MGCN
[51], SLMRec [52] and DiffMM [53]. While these baseline
models incorporate both visual and textual modalities (except
for Taobao, which contains only image modality), SimDiff
operates using only a single modality. Despite this constraint,
SimDiff consistently demonstrates competitive and often su-
perior performance across all four datasets.

These results suggest that SimDiff exhibits a more ef-
fective utilization of modality-specific information compared
to existing multimodal systems. Notably, on the Taobao
dataset—where only a single modality is available—SimDiff
significantly outperforms all other methods. This finding in-
dicates that the proposed modality signal injection strategy
can effectively enrich the representation of items and capture
users’ true preferences. It offers a simple yet efficient solu-
tion for recommendation tasks, even under limited modality
conditions.

G. Indepth Model Analysis

1) Cold-start Recommendation:
As mentioned in the introduction, data sparsity in recommen-
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Fig. 7: Performance comparison over Taobao and Amazon-
Office between SimDiff and other outstanding baseline models
in cold-start recommendation scenario

dation is a critical problem. To prove that the proposed SimDiff
has the advantage to solve this issue, we conduct cold-start
experiments on Taobao and Amazon-Office datasets, wherein
most users have scarce interactions with items. Figure 7 shows
the results of cold-start recommendation.

As illustrated in the figure, the x-axis represents different
interaction thresholds (5, 10, 15, 20, 25), while the y-axis
shows the corresponding performance metrics. The visualiza-
tion demonstrates comparative performance across all meth-
ods, with bars representing LightGCN, SGL, NCL, GiffCF,
and our proposed framework. SimDiff demonstrates superior
performance on sparser interaction data, particularly at lower
threshold values of 5, 10, and 15 interactions. Specifically,
in the Taobao dataset, it achieves significant improvements
in Recall@20 compared to baseline methods, with perfor-
mance gains of approximately 15%-20% when the interaction
threshold is set at these lower values. Similarly, in the Office
dataset, we observe even more substantial improvements, with
Recall@20 increasing by roughly 20%-40% under the same
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TABLE VI: Performance comparison between multimodal recommender systems and SimDiff

Datasets Metric MMSSL LATTICE BM3 LGMRec MGCN SLMRec DiffMM SimDiff

TikTok

Recall@20 0.0921 0.0888 0.0988 0.0672 0.1023 0.0967 0.1129 0.1348
Recall@50 0.1513 0.1465 0.1546 0.1053 0.1605 0.1517 0.1810 0.1885
NDCG@20 0.0394 0.0386 0.0399 0.0265 0.0367 0.0346 0.0456 0.0588
NDCG@50 0.0511 0.0501 0.0516 0.0339 0.0485 0.0461 0.0585 0.0694

Office

Recall@20 0.1277 0.1345 0.1158 0.1348 0.1196 0.1126 0.1351 0.1361
Recall@50 0.2123 0.2200 0.1944 0.2231 0.2029 0.1915 0.2308 0.2398
NDCG@20 0.0541 0.0524 0.0527 0.0598 0.0544 0.0508 0.0599 0.0606
NDCG@50 0.0732 0.0742 0.0695 0.0789 0.0724 0.0681 0.0804 0.0808

Taobao

Recall@20 0.1619 0.1622 0.1451 0.1661 0.1528 0.1474 0.1498 0.1893
Recall@50 0.2377 0.2434 0.2246 0.2392 0.2411 0.2305 0.2342 0.2803
NDCG@20 0.0749 0.0699 0.0636 0.0693 0.0645 0.0624 0.0649 0.0783
NDCG@50 0.0901 0.0862 0.0802 0.0868 0.0829 0.0791 0.0817 0.0965

Electronics

Recall@20 0.0425 0.0461 0.0451 0.0449 0.0466 0.0443 0.0467 0.0498
Recall@50 0.0671 0.0712 0.0738 0.0733 0.0756 0.0728 0.0754 0.0763
NDCG@20 0.0214 0.0206 0.0207 0.0209 0.0212 0.0212 0.0215 0.0217
NDCG@50 0.0273 0.0264 0.0267 0.0268 0.0274 0.0271 0.0277 0.0278
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Fig. 8: Performance versus efficiency analysis on Amazon-
Electronics. Performance strength and training efficiency in-
crease towards the upper left direction.

sparse interaction conditions. These consistent performance
improvements across different domains and sparsity levels
provide compelling evidence of our model’s strong advantage
in handling scenarios with limited user-item interactions.

2) Training Efficiency:
In this subsection, we aim to study the trade-off between
performance and training efficiency. We conduct a perfor-
mance versus efficiency analysis comparing different models
on the Amazon-Electronics dataset which has the most inter-
actions, measuring both the training time per epoch and the
Recall@20 metric. To ensure reliability and consistency, all
models are evaluated using the same GPU with single-process
execution. As illustrated in Figure 8, our SimDiff achieves
an optimal balance between training efficiency and model
performance, demonstrating superior results while maintaining
relatively low training times. Early approaches, such as ENMF,
while computationally efficient with shorter training times due
to their lower complexity, show poor performance. Light-
GCN, through its simplified graph convolution operations,
maintained high training efficiency and strong performance
across most baselines. The contrastive learning paradigm,
as demonstrated by NCL, further reinforced its effectiveness
in recommendation tasks, achieving second-best performance

TABLE VII: Auxiliary signal analysis
Signal Metric TikTok Office Electronics

G = Image

Recall@20 0.1310 0.1327 0.0469
Recall@50 0.1933 0.2246 0.0768
NDCG@20 0.0588 0.0540 0.0209
NDCG@50 0.0713 0.0731 0.0271

G = Text

Recall@20 0.1348 0.1361 0.0498
Recall@50 0.1885 0.2398 0.0763
NDCG@20 0.0588 0.0606 0.0217
NDCG@50 0.0694 0.0808 0.0278

with acceptable training durations.
3) Auxiliary Signal Analysis:

In our results of Section VI-B, the performance of the pro-
posed SimDiff is derived from utilizing textual features as
auxiliary signals across all datasets except Taobao, which ex-
clusively contains additional image features. To further inves-
tigate whether different modalities serving as auxiliary signals
influence the model’s generative performance, we conducted
experiments on the other three datasets that possess both
textual and image features. To ensure experimental reliability,
we maintained identical hyperparameter settings as those used
in the text-based auxiliary signal experiments. The results are
shown in Table VII.

As demonstrated by the empirical results, the performance
metrics exhibit comparable values across both modalities
when utilized as auxiliary signals, with certain metrics under
G=Image even surpassing those obtained with the text modal-
ity. This observation provides strong evidence that our pro-
posed SimDiff framework effectively leverages rich semantic
information across modalities for representation learning and
recommendation, with its performance primarily dependent on
the semantic richness of auxiliary signals rather than their
specific modality type.

H. Hyperparameter Analysis

To investigate the impact of key hyperparameters, we con-
duct experiments on four benchmark datasets: TikTok, Office,
Taobao, and Electronics. The studied hyperparameters include:
(1) the number of GCN layers used in the inference phase
(GCN Layers); (2) the reconstruction loss coefficient α1, with
the complementary BPR loss coefficient being (1−α1); and (3)
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Fig. 9: Hyperparameter sensitivity analysis on four datasets. Rows correspond to different metrics: Recall@20/50 and
NDCG@20/50. Columns show performance trends across GCN layers, diffusion loss coefficient α1, and semantic fusion
ratio ψ.

the semantic injection ratio ψ, which controls the proportion
of item representation versus semantic signal (with (1 − ψ)
for the semantic part). The results are shown in Figure 9.

We can observe that increasing GCN layers generally leads
to slight performance decline due to over-smoothing, with the
best results achieved using 2 or 3 layers. Varying α1 balances
diffusion and BPR losses, with stable performance in the range
of [0.6, 0.8], and the most consistent results at α1 = 0.7. As
ψ increases, item representations become more dominant over
semantic signals, improving performance up to around 0.6 or
0.7, especially for sparse datasets like Electronics and Office.

VII. CONCLUSION

In this work, we propose a novel diffusion framework called
SimDiff for recommender systems. We replace the randomly
sampled Gaussian noise addition by injecting auxiliary signal
derived from modal features to representations, which intro-
duces rich semantic information to sparse data. In order to
improve the generative effect, we build a collaborative training
objective strategy which harmonizes the generation and prefer-
ence learning. Our empirical evaluations across five real-world
datasets show that SimDiff significantly outperforms previous
diffusion methods. This work presents a novel perspective
on diffusion-based recommender systems and suggests new
research directions for applying the diffusion paradigm to
inherently sparse recommendation tasks.
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