CARA: Concept-Aware Risk Attention for Interpretable Collision
Prediction

Zhishan Tao'!, Ruoyu Wang', Yucheng Wu®, Enjun Du?,
Yilei Yuan!, Sherwin Ho', Yue Su*, Jinbo Su', Yi Hong'
'Shanghai Jiao Tong University
2The Hong Kong University of Science and Technology (Guangzhou)
*Hainan University
*The University of Hong Kong

Abstract

Collision detection in autonomous driving
faces a critical interpretability challenge, as
existing systems remain largely opaque in
safety-critical decision-making. Current ap-
proaches commonly rely on post-hoc ex-
planation techniques with limited fidelity or
concept-based modeling paradigms that de-
pend on explicit concept supervision, mak-
ing it difficult to reconcile predictive accuracy
with interpretability. To address these limita-
tions, we propose leveraging natural language
processing to extract interpretable risk con-
cepts from real-world accident reports, bridg-
ing the semantic gap between textual acci-
dent descriptions and visual collision scenar-
ios. We introduce CARA (Concept-Aware
Risk Attention), a framework that uses lan-
guage model-driven concept extraction and
multimodal language-vision alignment to au-
tomatically discover risk-aware semantic con-
cepts. Unlike traditional feature-driven at-
tention mechanisms, CARA grounds spatial-
temporal attention allocation in these human-
understandable concepts derived from linguis-
tic accident analysis. Experiments on standard
benchmarks demonstrate that CARA achieves
competitive accuracy and early warning ca-
pability while providing transparent, concept-
based explanations for risk assessment in
safety-critical Al systems.

1 Introduction

Natural language processing(NLP) has emerged as
a critical enabler for extracting semantic knowl-
edge from unstructured safety data in autonomous
systems (Park et al., 2021; Kim et al., 2024). The
analysis of textual accident reports through NLP
techniques—including text mining, named en-
tity recognition, and semantic parsing—provides
a systematic pathway to identify risk patterns
and safety-critical concepts that would otherwise
remain latent in massive datasets (Park et al.,

2021). This capability becomes particularly valu-
able in collision detection for autonomous driv-
ing, where the gap between machine perception
and human-interpretable decision-making signifi-
cantly impedes real-world deployment and regu-
latory certification (Koopman and Wagner, 2016;
Burton et al., 2017; Atakishiyev et al., 2024).

Incorporating language modalities into visual
perception tasks has become essential for devel-
oping explainable Al systems in safety-critical
domains (Radford et al., 2021; Li et al., 2022).
Specifically, the ability to extract, understand, and
reason about driving concepts through language
provides a crucial bridge between machine percep-
tion and human comprehension (Dai et al., 2023;
Liu et al., 2023a). However, existing autonomous
vehicle safety systems remain largely opaque, par-
ticularly in modules such as collision risk assess-
ment and behavior prediction, which directly im-
pact life-critical decisions (Winfield et al., 2019;
Ryan and Stahl, 2020). This opacity creates sub-
stantial barriers: black-box deep learning models
face skepticism from users, regulators, and cer-
tification authorities (Castelvecchi, 2016; Atak-
ishiyev et al., 2024), while traditional modular
pipelines sacrifice the performance benefits of
end-to-end learning (Hu et al., 2023).

Users and regulators increasingly demand trans-
parent decision-making in safety-critical systems
(Rai, 2020; Arrieta et al., 2020). Existing ap-
proaches to interpretability broadly include post-
hoc explanation techniques with limited fidelity
(Ribeiro et al., 2016; Lundberg and Lee, 2017;
Rudin, 2019), as well as concept-based model-
ing approaches such as concept bottleneck models
(CBMs), in which semantic concepts are explic-
itly incorporated into the learning pipeline (Koh
et al., 2020). Notably, CBMs may be instanti-
ated either as intrinsic bottleneck architectures or
as post-hoc concept-based explainers, depending
on how concepts are integrated. While the po-
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Figure 1: Comparison of traditional methods and the
proposed CARA Framework. (a) Previous methods
with low interpretability and opaque decision-making.
(b) CARA integrates concept-aware risk attention, of-
fering a balance of accuracy and interpretability.

tential of CBMs for sequential collision prediction
remains underexplored, a fundamental challenge
persists: most existing concept-based approaches
rely on static concept representations that cannot
adaptively modulate spatial and temporal attention
under evolving risk dynamics in driving scenarios.

We hypothesize that real-world accident re-
ports contain rich semantic knowledge, which
can serve as a foundation for automated and
interpretable collision prediction. Building on
this idea, we propose Concept-Aware Risk At-
tention (CARA), a concept-driven approach that
addresses the static limitation of prior art. In
contrast to purely feature-driven attention mech-
anisms (e.g., DSTA (Karim et al., 2022)), CARA
modulates attention using dynamically estimated
semantic concepts automatically extracted from
real-world accident scenarios. For instance, risk-
relevant concepts such as "proximity to vulnera-
ble road users" or "lane departure over the last
five frames" can be dynamically tracked and used
to modulate both spatial and temporal attention,
providing human-understandable explanations for
each prediction.

As illustrated in Fig. 1, the CARA framework
unifies spatio-temporal attention with concept-
derived risk scores to provide a balanced solution
that ensures both accuracy and interpretability.

CARA constructs a set of risk-aware con-
cepts using automated analysis of accident reports
and CLIP-based image-text alignment, enabling
annotation-free concept discovery.  Concept-
derived risk scores guide attention, focusing
model capacity on high-risk regions and critical
frames, while maintaining intrinsic interpretabil-
ity. This design makes our model well-suited for
safety-critical scenarios.

Our contributions are threefold:

* We propose CARA, a concept-driven atten-
tion approach that integrates interpretable se-
mantic concepts into spatio-temporal atten-
tion for collision prediction.

* We develop an automated pipeline to extract
risk-aware concepts from real-world accident
reports and align them with visual features
via CLIP, achieving intrinsic interpretability
without manual annotations.

* We conduct comprehensive experiments
demonstrating that CARA achieves a favor-
able interpretability—accuracy trade-off while
enabling earlier risk detection compared to
feature-driven baselines, showing its practi-
cal value for safety-critical deployment.

2 Related Work
2.1 Traffic Accident Anticipation Models

Traffic accident anticipation approaches can
be broadly categorized into sequential, graph-
based, transformer-based, and multimodal
paradigms. Sequential neural architectures such
as RNNs (Chan et al., 2016), LSTMs (Suzuki
et al., 2018), and GRUs (Liu et al., 2023b)
capture temporal dependencies but often struggle
with complex spatial interactions. Graph-based
methods represent traffic participants as nodes
and their interactions as edges (Bao et al., 2020;
Alam et al.,, 2024), while transformer-based
architectures apply self-attention to model long-
range dependencies (Nguyen et al., 2024). These
approaches provide predictive capabilities but
remain opaque and computationally heavy. Multi-
modal approaches integrate multiple sensors (e.g.,
vision, LiDAR) and textual instructions (Shao
et al., 2024; Mao et al., 2023), improving scene
understanding yet still face interpretability and
real-time deployment challenges.

2.2 Explainable AI for Autonomous Driving

Explainability techniques have evolved from ba-
sic visualization to multimodal frameworks. Vi-
sual attention techniques offer post-hoc inter-
pretability by visualizing attention weight distri-
butions (Wang et al., 2019), but often lack seman-
tic richness and temporal reasoning. Text-based
explanation systems generate human-readable de-
scriptions via CNN-LSTM architectures with at-
tention alignment (Kim et al., 2018, 2020), yet
require extensive human input and cannot fully



explain the model’s decision-making processes.
Multimodal LLM-based methods (Dhillon and
Torresin, 2024) leverage language reasoning for
scene and accident explanations but struggle
with dynamic traffic scenarios and real-time con-
straints. Building on these insights, our work ex-
plicitly integrates concept bottlenecks with spatio-
temporal attention to deliver temporally consis-
tent, risk-aware explanations.

2.3 Concept Bottleneck Models for
Explainable Driving

Concept-based explainability has demonstrated
strong potential in static tasks (Koh et al., 2020;
Oikarinen et al., 2023; Sawada and Nakamura,
2022), while its extension to dynamic collision
anticipation remains challenging. In particular,
most existing CBM formulations do not explic-
itly model how the relevance of semantic con-
cepts evolves over time, nor how such evolving
concepts should influence spatial and temporal at-
tention. As a result, concept representations are
often weakly coupled with sequential perception
and decision-making processes. CARA addresses
this limitation by integrating concept representa-
tions with dynamic spatio-temporal attention, en-
abling temporally coherent and interpretable colli-
sion risk assessment.

3 Methodology

3.1 Problem Formulation

The primary objective of traffic collision predic-
tion is twofold: (1) to estimate the probabil-
ity of a collision occurring in each frame of a
driving video, and (2) to predict it as early as
possible to maximize the available reaction time.
Given a dashboard video stream of 7' frames
V = {V1,Va,...,Vp}, the goal is to ... estimate
frame-wise probabilities P = {p1, p2, ..., pr} to-
gether with a sequence of concept activation vec-
tors A = {aj,as,...,ar}, where each a;, =
lat1,at2,...,a k] indicates the underlying risk
factors. Here, K represents the total number
of interpretable concepts in our predefined con-
cept space. For videos where a collision occurs
at ground-truth time 7, we define the Time-to-
Accident (TTA) as At = 7 — t,, where ¢, is the
earliest frame in which the probability score p; ex-
ceeds a predefined threshold p,. Consequently, a
video is classified as accident-positive if p; > p,
for any t > t,, and as accident-negative if 7 = 0.

This formulation highlights three requirements of
collision prediction: accurate probability estima-
tion, sufficient early warning through large TTA,
and interpretability via human-understandable risk
concepts.

3.2 Overview of CARA Framework

To meet the requirements of accuracy, early
warning, and interpretability, we introduce the
Concept-Aware Risk Attention (CARA) frame-
work. As illustrated in Fig. 2, CARA is built
upon three main components: (1) Risk-Aware
Concept Generation (Section 3.3), which auto-
matically extracts semantic concepts from acci-
dent reports; (2) Concept-Aware Risk Attention
(Section 3.4), which uses these concepts to dy-
namically modulate spatial and temporal attention;
and (3) Concept-Driven Temporal Fusion (Sec-
tion 3.5), which ensures concept semantics are
preserved throughout the prediction sequence.

3.3 Risk-Aware Concept Generation

To overcome the dependency on expensive manual
annotations inherent in traditional CBM, we de-
sign an automated pipeline for risk-aware concept
discovery grounded in real-world accident reports.
Concept Extraction. We utilize 804 California
DMV autonomous vehicle accident reports as the
source for collision-related concepts. Key risk fac-
tors are extracted using spaCy dependency pars-
ing. We leverage GPT-4o0 to generate complemen-
tary safe behavior concepts to ensure robustness
against both high-risk and safe scenarios. Ex-
tracted concepts are filtered using frequency cut-
offs and CLIP-based visual grounding thresholds
to ensure sufficient visual grounding. This process
yields 210 interpretable concepts spanning vehicle
behaviors (68), environmental factors (42), road
user interactions (35), traffic violations (41), and
safe behaviors (24). Full details, including NLP
rules, filtering criteria, and concept statistics, are
provided in Appendix B and Appendix B.3.
CLIP-based Concept Activation. For each
video frame V;, we compute visual embeddings
vy and encode concept descriptions as c¢;. Let
C = {c1,...,cx} denote the set of concept text
descriptions. Raw concept activation is computed
via CLIP’s zero-shot cosine similarity a;;. To
mitigate frame-level noise, we apply exponential
moving average smoothing: a;; = -Gz ;+(1—a)-
a;—14. The optimal smoothing factor « is deter-
mined via validation set analysis (Appendix E.2).
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Figure 2: CARA Framework Overview. Our model constructs risk-aware concepts from 804 DMV accident
reports via CLIP alignment. The concept-aware risk attention mechanism guides spatial and temporal focus based

on interpretable semantic concepts.

The validated activations form the concept activa-
tion vector a; = [a¢1,...,at K| € RX, bridg-
ing CLIP’s semantic space with collision predic-
tion while ensuring temporal stability and seman-
tic consistency.

3.4 Concept-Aware Risk Attention (CARA)

34.1 Concept-Mediated Attention Paradigm

Traditional models (e.g., DSTA (Karim et al.,
2022)) learn attention weights in an end-to-end
manner relying solely on collision supervision,
lacking interpretable grounding. CARA intro-
duces concept-mediated attention guided by ex-
plicit concept-level constraints Leoncept, Creating a
two-level supervision hierarchy:

. hy fo 94
visual features — concepts — ay — p; (1)

where h,, maps visual features to interpretable
concept activations, fy computes attention weights
via concept-derived risk signals, and g4 denotes
the collision prediction head that maps the at-
tended features to the frame-wise collision prob-
ability p;, where p; denotes the predicted colli-
sion probability at frame ¢. This design enables
structured interpretability across multiple dimen-
sions, i.e., concept-level (which risk factors are in-
volved?), risk aggregation (how are these concepts
combined?), attention-level (how does risk influ-
ence model focus?), and prediction-level (how do

the attended features lead to final predictions?).
CARA generates explanations directly through the
architecture, rather than requiring post-hoc at-
tribution methods such as GradCAM (Selvaraju
et al., 2017) or SHAP (Lundberg and Lee, 2017).

3.4.2 Risk Modulation Mechanism

The risk modulation translates the high-level se-

mantic concepts into dynamic attention guidance,

applied to both spatial and temporal domains.
Given the concept activation vector a; produced

by our generation pipeline, we compute the corre-

sponding frame-level risk score as follows:

SO = ¢(MLPg (ar)), @)

I

where ¢ is sigmoid and MLP;;g learns to weight
concept activations by collision predictive power.
The risk modulation function is defined as:

P(Sr(iib =1+~ Sr(its%(’ 3)

where +y is the amplification factor. This linear for-
mulation preserves attention ranking, allows pro-
portional emphasis on risk, and ensures stable gra-
dient propagation. The specific value for v and the
mathematical properties of this function are ana-
lyzed in Appendix C.1. The concept-derived risk
score p(Sr(ig() serves as a dynamic gate, directing
spatial attention capacity toward frames and ob-
jects with the highest concept-level risk.



For spatial attention, the standard attention
scores ;™" are computed based on object-level
visual features x; and hidden state h;_;. The mod-

ulated spatial attention is:
spatial spatial ()
oy = softmax(e;”  ©p(S;q)), 4

where p( mk) (Eq. 3) is a scalar broadcast across
the N spatial positions.
For temporal attention over a sliding window of
M frames:
;emporal _ soﬁmax(e;emporal ® ¢(SETS;1W+1:75)))’ (5)
(t—M+1:t) (t—M+1) () M
where Srlsk [Srisk [ Srlsk] €R
and ¢(+) is a 1D causal convolution that captures
temporal risk patterns. The specific window size

M and the design rationale for ¢(-) are provided
in Appendix C.2.

3.5 Concept-Driven Temporal Fusion

We employ a GRU-based fusion module that ex-
plicitly preserves concept semantics:

ht _ GRU(ffnendedHat, htfl), (6)

attended
ft

where represents the concept-aware

notes concatenation, and h; is the GRU hidden
state. The prediction head g4 maps h; to the
frame-wise collision probability p;, and the inter-
mediate representation prior to the final sigmoid is
denoted as o; when needed for analysis.

CARA preserves interpretability through: (1)
explicit concept injection at every time step, ensur-
ing concepts remain accessible before non-linear
GRU transformations, and (2) concept consistency
regularization via Lconcept (Section 3.6), prevent-
ing concept drift where learned representations de-
viate from semantic meanings. Although the hid-
den state h, is not directly interpretable, the tem-
poral sequence {aj,...,ar} provides a transpar-
ent semantic trace of risk assessment. Detailed
mechanism analysis is in Appendix C.3.

3.6 Training Objective

We employ multi-task learning to balance colli-
sion prediction and concept interpretability:

»Clotal = Ecollision =+ )\1 Lconcepl + )\Q»Cinlerpretability (7)

Collision prediction loss (L opision) iS the stan-
dard Binary Cross-Entropy (BCE) applied to the

frame-wise prediction sequence:

T

% > lyelogpe + (1 —ye)log(1—pi)],  (8)
t=1

»Ccollision = -

where T is the number of frames, y; € {0,1} is
the ground-truth collision label, and p; is the pre-
dicted collision probability.

Concept consistency loss (Lconcept) enforces
alignment with CLIP’s semantic space to prevent
concept drift:

T K
1
concept Z Z 1 — cos at s SCLIP(‘/ta Cz))) .

t:l =1
©)
This term ensures that each concept activation pre-
serves its original semantic meaning, crucial for
intrinsic interpretability. The rationale for using
cosine similarity and CLIP is discussed in Ap-
pendix D.
Sparsity regularization (Liyerpretability) €ncour-
ages focused reasoning aligned with human cogni-
tion:

['interpretability = (10)

1 LK
72D lawil
t=1 i=1
This L1 regularization directly enforces sparsity
by pushing low-magnitude concept activations to-
wards zero. The justification for L1 and its effect
is provided in Appendix D.3.
The loss weights A1 and Ay are optimized via
grid search on the validation set. Detailed hyper-
parameter settings and sensitivity analysis are pre-

sented in Appendix E.3 and Appendix A.3.

4 Experiments

We conduct experiments to answer three research
questions: RQ1: Does CARA outperform state-
of-the-art methods in accuracy and early warning
(Sec. 4.2)? RQ2: How essential are CARA’s ar-
chitectural components and its native integration
of semantic concepts (Sec. 4.3)? RQ3: Does
CARA provide human-understandable reasoning
(Sec. 4.4)?

4.1 Experimental Setup

We evaluate CARA on three standard bench-
marks: DAD, CCD, and A3D, using stan-
dard metrics (AP, mTTA, R80) and comparing
against five state-of-the-art baselines (DSA, US-
tring, DSTA, GSC, and CRASH). Complete de-
tails on datasets, metrics, baselines, and imple-
mentation settings are provided in Appendix A.



Table 1: Performance comparison on three benchmarks. Bold: best, underline: second best.

Model DAD A3D CCDh
AP(%) mTTA(s) R80(s) | AP(%) mTTA(s) R80(s) | AP(%) mTTA(s) R80(s)

DSA (Chan et al., 2017) 63.37 1.58 1.81 93.58 3.61 4.13 98.10 3.97 4.21
UString (Bao et al., 2020) 68.10 1.61 2.13 94.08 3.96 4.61 98.53 4.55 4.82
DSTA (Karim et al., 2022) | 66.69 1.51 2.27 93.71 3.87 4.67 98.67 4.33 4.59
GSC (Wang et al., 2019) 68.70 1.29 2.11 93.89 3.76 4.51 98.95 4.29 4.57
CRASH Liao et al. (2024) | 70.51 1.87 2.16 94.17 4.61 491 99.13 4.63 4.87
CARA (Ours) 70.67 1.97 223 94.23 4.62 4.87 99.35 4.69 4.81

Concept Base Construction. The foundation of
CARA’s interpretability is a manually refined set
of 210 domain-specific risk and safety concepts.
These concepts were derived through a structured
procedure involving natural language process-
ing (NLP) analysis of 804 raw textual accident re-
ports sourced from the California DMV database.
This process ensures the concepts are linguisti-
cally grounded and relevant to real-world colli-
sion mechanisms, effectively bridging the seman-
tic gap between textual accident causation and vi-
sual scene dynamics. The extracted concept em-
bedding utilizes a frozen CLIP ViT-B/32 model,
ensuring semantic coherence with the visual do-
main.

4.2 Overall Performance (RQ1)

Table 1 demonstrates that CARA achieves state-
of-the-art performance across all benchmarks. On
the challenging DAD dataset, CARA attains the
highest AP of 70.67%, the earliest mean warning
time (mTTA) of 1.97s, a crucial metric for real-
time safety, and a competitive R80 of 2.23s, sur-
passing the second-best method, CRASH (70.51%
AP, 1.87s mTTA, 2.16s R80). Compared to tra-
ditional feature-driven methods such as DSA and
DSTA, CARA improves AP by 4-6 percentage
points, highlighting the advantage of concept-
aware reasoning. This consistent superiority
across all three metrics validates our core hypoth-
esis: grounding attention in interpretable semantic
concepts enhances both prediction accuracy and
early warning capability, and proves particularly
effective in the complex, ambiguous urban scenar-
ios of DAD.

Generalization Across Benchmarks. CARA’s
strong performance consistently generalizes to the
A3D and CCD benchmarks. It achieves AP
gains of 0.1-1.2% and mTTA improvements of
0.01-0.06s over the SOTA baseline across both
datasets. This indicates that the concept-aware ap-
proach is robust and effectively generalizes across

varying data distributions and sensor configura-
tions, reinforcing its broad applicability and op-
erational reliability in diverse driving environ-
ments.

4.3 Ablation Study on CARA (RQ2)

Computational Efficiency. We first confirm the
efficiency of CARA. The integration of concept-
driven attention modules introduces a modest
computational overhead of only 5-8% com-
pared to the CRASH baseline, while maintain-
ing similar parameter counts and training time.
This confirms that the enhanced interpretability is
achieved without a significant efficiency trade-off,
supporting its viability for near real-time deploy-
ment.

To answer RQ2, we conduct ablation studies to
validate the necessity of each core component in
CARA’s architecture.

4.3.1 Necessity of Native Concept Integration

Table 2: Apples-to-apples comparison with concept
bottleneck models on the DAD dataset.

Model | AP(%) mTTA(s) R80(s)
Baseline (DSTA) 66.69 1.51 2.27
CBM (Concept-to-Prediction) | 64.8 1.30 2.05
CBM + Temporal Aggregation | 66.8 1.58 2.20
CARA (Ours) 70.67 1.97 2.23

To clarify the relationship between CARA and
concept bottleneck models (CBMs), we examine
whether concept integration should be architec-
turally native rather than appended post-hoc. As
shown in Table 2, a vanilla CBM that directly
maps concept activations to collision probabili-
ties is consistently inferior, while temporal aggre-
gation only partially closes the gap. In contrast,
CARA integrates concepts natively into risk esti-
mation and attention, enabling concept activations
to directly guide spatio-temporal reasoning.



Table 3: CBM integration analysis: Performance drop
when adding CBM to existing methods vs. CARA’s
native concept design.

Table 4: Component ablation on the DAD dataset.
CRA: Concept Risk Attention, SRA: Spatial Risk At-
tention, TRA: Temporal Risk Attention.

Model | DAD AP(%) A3D AP(%) CCD AP(%)
UString 68.10 94.08 98.53
UString+CBM | 65.80 ({2.30) 92.50 (}1.58) 97.80 ({0.73)
DSTA 66.69 93.71 98.67
DSTA+CBM 64.10 (2.59) 92.00 (J1.71) 98.00 (J0.67)
CRASH 70.51 94.17 99.13
CRASH+CBM | 68.90 (J1.61) 93.10({1.07) 98.60 (]0.53)
CARA (Ours) 70.67 94.23 99.35

4.3.2 CBM Integration Analysis

To validate the necessity of native concept in-
tegration, we retrofitted existing baselines with
post-hoc CBM modules. Table 3 reveals a crit-
ical finding: post-hoc CBM integration consis-
tently degrades performance across all baselines
(AP drops from 0.53% to 2.59%). This degrada-
tion is most pronounced on the complex DAD sce-
narios, suggesting that concept-feature misalign-
ment severely impacts risk assessment. In con-
trast, CARA’s built-in concept design achieves op-
timal performance without compromising accu-
racy, showing that interpretability should be archi-
tecturally integrated rather than appended exter-
nally. The fundamental difference lies in CARA’s
end-to-end concept learning mechanism, which
preserves semantic-visual alignment through the
Leconcept regularization term (Sec. 3.6), ensuring
concepts genuinely drive decision-making.

4.3.3 Component Analysis

We systematically evaluate the contribution of
each architectural component through ablation ex-
periments on the DAD dataset (Table 4). The
results show that the Concept Risk Attention
(CRA) module is foundational (|1.75% AP,
40.32s mTTA), and the Temporal Risk Atten-
tion (TRA) is crucial for early warning ({0.34s
mTTA). Combined component removal (e.g., "w/o
Risk Components") causes a dramatic 3.62% AP
collapse, validating that CARA’s full risk percep-
tion mechanism operates as an integrated, syn-
ergistic system. The auxiliary loss functions,
Leconcept and Linerpretability » SErve essential functions
in maintaining interpretability by preventing con-
cept drift and enforcing sparse activation patterns.
The ablation trends are consistent across A3D and
CCD datasets: CRA contributes 0.9-1.5% AP,
TRA improves early warning by 0.2-0.4s, and re-
moving both risk components causes a 2.8-3.5%

Variant |  AP(%) mTTA(s) R80(s)
Full CARA 70.67 1.97 2.23
w/o CRA 68.92 (J1.75) 1.65({0.32) 1.98({0.25)
w/o SRA 69.75(40.92) 1.75(10.22) 2.08 ({0.15)
w/o TRA 69.25 ({1.42) 1.63(10.34) 1.97 ({0.26)
W/0 Leoncept 70.05 (0.62) 1.83 (J0.14) 2.10 ({0.13)
W/0 Linterpretability 70.32(40.35) 1.84 (]0.13) 2.10(J0.13)
w/o Risk-Aware Attn | 68.15(]2.52) 1.42(J0.55) 1.72(J0.51)
w/o Risk Components | 67.05 ({3.62) 1.05(]0.92) 1.42(J0.81)

AP drop, confirming architectural generalization.
Complete ablation results on A3D and CCD
datasets, along with detailed component anal-
ysis, are provided in Appendix F.

4.4 Interpretability Analysis (RQ3)

To answer RQ3, we analyze CARA’s inter-
pretability through qualitative case studies and
comparative concept quality assessment. This
dual evaluation demonstrates how concept acti-
vations provide transparent explanations aligned
with observable scene dynamics.

4.4.1 Concept Sparsity and Error Analysis

To analyze the depth of CARA’s reasoning, we in-
vestigate its concept utilization efficiency and fail-
ure modes. Across the DAD validation set, CARA
achieves superior sparsity, activating an average of
only 8.3 concepts per frame (Table 5). We observe
that low-frequency concepts (occurring in < 5%
of videos) still contribute significantly to the ear-
liest warnings, confirming CARA’s ability to ef-
fectively leverage rare but critical semantic cues.
Error analysis of False Positive (FP) and False
Negative (FN) cases shows that most mispredic-
tions occur in highly ambiguous scenarios (e.g.,
abrupt lane merges, partial object occlusion). Cru-
cially, even in these edge cases, CARA maintains a
high degree of semantic consistency, grounding its
(mis)prediction in clear concepts, thus highlight-
ing the robustness of its concept-based reasoning.

4.4.2 Concept Activation Patterns

We examine three representative scenarios to val-
idate CARA’s reasoning transparency. In true
positive cases, CARA correctly predicts colli-
sions by activating high-risk concepts that di-
rectly correspond to observable scene dynam-
ics. Conversely, the model recognizes safe condi-
tions in true negative scenarios through dominant
safety concept activations. The most revealing
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Figure 3: Case Studies of Collision Anticipation on the DAD Dataset. (a) a True Positive (TP) sample, (b)
a True Negative (TN) sample, and (c) a Confusing Negative (CN) sample. Frame-wise prediction probabilities
(blue bars) and model attention for key scenarios are shown, with the red dashed line indicating the critical 0.5
detection threshold. Green bounding boxes highlight the top attended objects, demonstrating how the Concept-
Aware Risk Attention (CARA) mechanism dynamically focuses on relevant risk factors over time. Additional

case studies are provided in Appendix G.

insights emerge from confusing negative cases
(illustrated in Fig. 3c), where CARA correctly
avoids false positives by simultaneously maintain-
ing safety concept activations, demonstrating a
nuanced evaluation of multiple semantic dimen-
sions rather than black-box decision-making. Ad-
ditional case studies and comprehensive visual-
izations are provided in Appendix G.

4.4.3 Comparative and Quantitative Concept
Quality Assessment

Table 5: Concept quality metrics evaluated on the DAD
validation set.

Model | Active CLIP Sparse Consist.

CARA (Ours) | 83 083 0.92 0.87
CRASH+CBM | 11.7 0.71  0.76 0.68
DSTA+CBM 175 0.64 058 0.52
UString+CBM | 22.8 0.58 043 0.41

To comprehensively validate CARA’s inter-
pretability advantage, we analyze both qualita-
tive and quantitative concept activation patterns
across methods. On challenging negative sam-
ples, CARA demonstrates high semantic consis-
tency—activating concepts directly tied to observ-
able scene dynamics such as lane merging, pedes-
trian motion, and braking events—while maintain-
ing superior sparsity, with only about 8§ active
concepts per scenario compared to over 15 for
post-hoc CBM variants. In contrast, post-hoc inte-
gration methods often trigger spurious or scene-
irrelevant concepts, undermining interpretability
and practical usability.

Thus, CARA’s concept activations provide ac-
tionable explanations: users can trace risk as-
sessment to specific semantic factors, enabling tar-
geted model refinement through expert feedback.

Quantitatively, across the DAD validation set,
CARA achieves superior performance across



all concept quality metrics, as summarized in
Table 5. It maintains an average of 8.3 active
concepts per frame (versus 11.7-22.8 for post-
hoc baselines), achieves high CLIP alignment
(0.83), strong sparsity (0.92), and high seman-
tic consistency (0.87). These results confirm that
CARA’s native concept integration yields more
interpretable and semantically coherent explana-
tions than retrofitted approaches. (detailed in Ap-
pendix G.3)

5 Conclusion

We introduce CARA, a framework advancing
collision detection via concept-aware risk atten-
tion, addressing the critical interpretability gap
in autonomous driving Al. Our approach tack-
les two key challenges: automatic extraction
of interpretable semantic concepts from real-
world accident data and their dynamic inte-
gration into attention mechanisms for transpar-
ent, human-understandable, and context-aware
decision-making. The concept-driven attention
personalizes spatial-temporal focus based on se-
mantic reasoning, while the automated concept
pipeline leverages multimodal language-vision
alignment to discover risk-aware concepts effi-
ciently without manual annotation. Experiments
across multiple benchmark datasets show that
CARA achieves state-of-the-art predictive accu-
racy and early warning performance, while simul-
taneously enabling detailed inspection of frame-
level risk factors via concept activations. This
concept-driven approach opens promising avenues
for future research in advanced multimodal con-
cept learning, robust safety-critical applications,
and other domains where combining predictive
performance with interpretability is essential for
human trust, operational safety, and large-scale
deployment.

6 Limitations

While CARA demonstrates strong performance
and interpretability, we acknowledge several nat-
ural limitations that suggest directions for future
work. First, CARA introduces additional concept-
driven attention modules, which incur mod-
est computational overhead compared to purely
feature-driven baselines. Although our current
implementation remains efficient enough for near
real-time deployment, future research could ex-
plore lightweight variants to further reduce la-

tency. Second, our current framework focuses
primarily on visual-textual integration; extend-
ing it to incorporate additional sensing modali-
ties such as LiDAR or radar may provide com-
plementary information in complex driving con-
ditions. Finally, while CARA emphasizes risk-
related semantic concepts, expanding its reasoning
to cover broader contextual factors (e.g., environ-
mental conditions or driver states) could enhance
explanation richness. These considerations do not
undermine the validity of our contributions but in-
stead highlight natural opportunities for future im-
provement.

7 Ethical Considerations

Our research on the Concept-Aware Risk Atten-
tion (CARA) framework for collision prediction
is dedicated to enhancing the safety and account-
ability of autonomous driving systems. We con-
firm that all data utilized are strictly publicly avail-
able and de-identified benchmark datasets (DAD,
A3D, CCD), containing no personally identifiable
or sensitive biometric information. Furthermore,
the interpretable concepts underpinning CARA
are derived from abstract accident reports, focus-
ing exclusively on generic, high-level risk fac-
tors (e.g., "tailgating,” "unsignaled merge") rather
than individual behaviors or specific private de-
tails. By providing actionable explanations that
explicitly link model predictions to these semantic
concepts, CARA directly improves system trans-
parency, mitigates the risk of algorithmic opacity,
and strengthens accountability in critical decision-
making. While acknowledging the potential for
inherent biases in any real-world vision datasets,
our concept-driven approach grounds predictions
in universal risk semantics, thereby promoting a
more robust and fair risk assessment across diverse
operational scenarios. We affirm that this work
strictly adheres to rigorous ethical standards and
is committed to advancing Al safety and responsi-
ble autonomous driving applications.
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A Implementation Details

CARA is trained for 50 epochs with a batch size
of 32 using the Adam optimizer with an initial
learning rate of 1 x 10~%. All experiments are
conducted on NVIDIA A800 GPUs with 48GB
memory. We extract features using VGG-16 with
an embedding dimension of 4,096, and the hid-
den state dimension of GRU is set to 512. The
Concept Bottleneck Model incorporates 210 inter-
pretable driving concepts derived from 804 Cali-
fornia DMV accident reports.

A.1 Datasets and Metrics Details

We evaluate CARA on three standard benchmarks:
DAD (Chan et al., 2017), CCD (Bao et al., 2020),
and A3D (Yao et al., 2019). DAD (Drive-and-Act
Dataset) focuses on complex urban scenarios and
common accident types (e.g., lane-change, inter-
section), making it the most challenging. CCD
(Collision-Critical Driving) focuses on rear-end
and cut-in scenarios. A3D (Anticipating Acci-
dents from Driving) is a large-scale dataset focus-
ing on diverse driving behaviors.
We adopt standard evaluation metrics:

¢ Average Precision (AP): A standard metric
for accuracy, calculated from the Area Under
the Precision-Recall curve.

¢ Mean Time-to-Accident (nTTA): The av-
erage time interval between the first correct
detection (prediction probability > 0.5) and
the actual time of the accident. It measures
early warning capability.

e TTA@R80 (R80): The Time-to-Accident
measured at the point where the Recall (R)
reaches 80%. It provides a more robust mea-
sure of early detection at a high-performance
threshold.

A.2 Baselines Architectures

We compare our model against five representative
state-of-the-art methods:

e DSA (Chan et al., 2017): A feature-driven
baseline that uses a simple LSTM to model
temporal dynamics of features extracted from
predicted bounding boxes.

e UString (Bao et al.,, 2020): Focuses on
spatio-temporal modeling using 3D convolu-
tional and recurrent networks to capture com-
plex scene dynamics.

* DSTA (Karim et al., 2022): Employs a
Dynamic Spatio-Temporal Attention mecha-
nism to weigh the importance of different ob-
jects and frames over time.

* GSC (Wang et al., 2023): Utilizes Graph
Neural Networks (GNNs) to explicitly model
the relational dynamics between the ego-
vehicle and surrounding agents.

* CRASH (Liao et al., 2024): A competitive
SOTA method focusing on multimodal inte-
gration (visual, trajectory) and risk estima-
tion for accident anticipation.

A.3 Training Configuration

This section provides detailed specifications for
the training environment and hyperparameter set-
tings employed to achieve the results presented in
the main paper. All experiments were conducted
using the Adam optimizer and standard data aug-
mentation techniques. Key hyperparameters, in-
cluding the weights for our auxiliary loss functions
(A1 for concept alignment and Ay for sparsity),
were determined via grid search on the validation
set. Table 6 comprehensively lists all parameters,
their corresponding values, and brief descriptions.

A.4 Dataset Statistics

We utilize three benchmark datasets: DAD, A3D,
and CCD, to validate CARA’s performance and
generalization capability. This section provides
the detailed statistics necessary for reproducing
our experimental setup. As shown in Table 7,
the statistics cover key attributes such as the to-
tal number of videos, the ratio of accident (posi-
tive) to non-accident (negative) samples, average
video length, and video resolution. Notably, the
datasets present varying degrees of imbalance and
complexity, ensuring a rigorous evaluation.

B Risk-Aware Concept Generation
Pipeline

This appendix provides comprehensive details on
our automated concept generation pipeline, sup-
plementing the overview in Section 3.2.

B.1 DMYV Accident Report Processing

We utilize 804 California DMV autonomous ve-
hicle accident reports spanning January 2019 to
March 2025. These reports follow a structured for-
mat containing:



Table 6: Complete Hyperparameter Settings

Hyperparameter | Value | Description
Learning rate 1 x10™* | Adam optimizer
Batch size 32 -

Epochs 50 Early stopping

~ (risk amplify) 2.0 Grid search: {0.5,1.0,2.0,3.0,5.0}
« (smoothing) 0.7 EMA decay

A1 (concept) 0.1 Lconcept Weight

A2 (sparsity) 0.01 Linerpretabitity Weight
CLIP model ViT-B/32 | Frozen, deip = 512
GRU hidden dim 512 Two-layer

Window M 15 0.5s at 30 FPS
Kernel size k 3 For ¢(-) ConvlD

Table 7: Dataset Statistics

Metric \ DAD A3D CCD
Total videos 1,232 1,500 1,416
Accident 675 876 924
Non-accident 557 624 492
Avg. frames 100 120 90
Accident frame 85 95 75
FPS 30 30 30
Resolution 1280%x720 1920x1080 1280x720

¢ Collision type and severity

* Environmental conditions (weather, lighting,
road surface)

Vehicle behaviors leading to collision

 Traffic context (intersections, lane configura-
tions)

* Causal factor descriptions

Concept Extraction Rules. We employ spaCy
(v3.5, en_core_web_sm) for dependency parsing
with custom rules:

1. Collision-related noun phrases: Extract
NPs with heads matching {collision,
crash, accident, impact,
contact} and their dependent objects
via dob j, pobj, or nsub j relations.

2. Causal relationships: Identify phrases follow-
ing markers like “due to”, “caused by”, “re-
sulted from” using dependency pattern prep
— pcomp.

3. Vehicle behavior descriptors: Extract verb
phrases describing actions (e.g., “failed to
maintain”, “did not yield”’) combined with their
objects.

4. Environmental factors: Capture adjectival
modifiers and prepositional phrases describing

LT3

conditions (e.g., “in heavy rain”, “poor visibil-
ity”).
Example Extraction:

Original report. “The AV failed to
maintain a safe following distance in
heavy traffic and rear-ended the lead ve-
hicle when it braked suddenly.”

Extracted concepts:
* “unsafe following distance”
* “heavy traffic conditions”

* “sudden braking event”
* “rear-end collision”

Filtering Pipeline. Initial extraction yields

~1,840 candidate concepts. We apply:

1.

Deduplication: Remove exact duplicates and
concepts with cosine similarity > 0.85 (mea-
sured via sentence-BERT embeddings).

Frequency filtering: Retain concepts appear-
ing in > b reports to ensure representativeness.

. Relevance filtering: Remove concepts too

similar to prediction classes (cosine similarity
with “collision” > 0.9).

After filtering: 1,840 — 892 unique collision-

related concepts.

B.2 Negative Sample Generation via GPT-40

To create a balanced concept space, we generate
safe driving scenarios using GPT-4o (version gpt-
40-2024-05-13) with temperature=0.3 for consis-
tency.

Prompt Template:

You are a traffic safety
expert. Given an accident



scenario description,
generate a corresponding
safe driving scenario
that preserves the
environmental context but
replaces risky behaviors
with safe ones.

Accident scenario:
"{original_report_excerpt}"

Requirements:

e Maintain the same
weather, and

traffic density

lighting,

* Replace unsafe actions
with safe alternatives
* Use parallel sentence

structure

e Output format: "Safe
scenario: [your
response]"

Generation Examples:

After generation, we extract concepts from safe
scenarios using the same spaCy pipeline, yielding
~780 safe driving concepts.

B.3 CLIP-based Visual Grounding

We validate that extracted concepts have sufficient
visual grounding using CLIP ViT-B/32.

Validation Set. We curate 1,000 driving images
from DAD/A3D/CCD validation splits, ensuring
diversity in:

* Traffic density (sparse, moderate, heavy)
* Weather conditions (clear, rain, fog)
* Road types (highway, urban, residential)

Grounding Score.
compute:

For each concept c;, we

1000 CLIPjmage (1) - CLIPiexi(ci)

1
GroundScore(c;) = ——
roundScore(c;) 1000;1 |CLIPimage (I;)] - |CLIP ey (c:)]

1D

Concepts are retained if GroundScore(c;) >
0.25. This threshold is empirically determined:
concepts below 0.25 show inconsistent activation
patterns across semantically similar frames, while
those above 0.25 exhibit stable semantics.

Final Concept Library. After CLIP filtering:
892 + 780 — 210 concepts.

B.4 Concept Library Statistics

Concept Activation Statistics. Across DAD val-
idation set:

* Average concepts activated per frame (with-
out Einterpretability): 45.2

* Average concepts activated per frame (with
£interpretability): 8.3

» Average CLIP cosine similarity with in-
tended semantics: 0.83

C Theoretical Analysis of CARA
Components

C.1 Design Rationale of Risk Modulation
Function

The linear risk modulation function p(Sr(ig) =

1+ Sr(i?k is designed to satisfy three critical
mathematical properties.

C.1.1 Property 1: Ranking Preservation
Theorem. For any attention scores a; < «; in the
original distribution, we have p(S)-a; < p(S)-«;
forall S > 0.

Proof. Given p(S) = 1 + ~.S where v > 0:

p(S) - ai = p(8S) - aj = p(S) (e — o)
=(1+78) (s —
<0

aj) (12)

since a; < aj and (1 +~S) > 0.
Therefore, the relative ordering is preserved un-
der risk modulation. []

C.1.2 Property 2: Proportional Enhancement

Theorem. When risk increases by AS, all atten-
tion weights increase by YAS«;, providing risk-
proportional emphasis.

Proof. Consider risk scores S; and So = S7 +

AS:
p(S2) - ai = p(S1) - @i = [(1+7S82) = (1+y51)] - i
:7(52751)-0@ (13)
=vAS - o

This shows that attention amplification is di-
rectly proportional to both risk increase (AS) and
base attention («;). [



Table 8: GPT-40 Generation Examples

Accident Scenario \ Generated Safe Scenario

The vehicle failed to maintain safe following distance and
collided when traffic stopped.

The vehicle maintained a 2-second following distance and
smoothly decelerated when traffic slowed.

The AV did not yield to the pedestrian at the crosswalk. The AV detected the pedestrian and yielded appropriately at
the crosswalk.

The vehicle made an unsafe lane change without signaling. | The vehicle checked blind spots, signaled, and executed a

smooth lane change.

Table 9: Final Concept Library by Category

Category
Vehicle Behavior | 68

| Count | Sample Concepts

\ unsafe lane change, sudden braking, running red light, insufficient following distance

Environmental ‘ 42 ‘ wet road surface, poor visibility, heavy traffic, nighttime driving
Road Users \ 35 \ pedestrian jaywalking, cyclist intrusion, motorcyclist weaving
Traffic Violations | 41 | failure to yield, illegal turn, speeding, wrong-way driving

Safe Behaviors \ 24 \ maintained safe distance, proper signaling, yielded appropriately

C.1.3 Property 3: Gradient Stability

Analysis. The gradient of p with respect to risk is
constant:

dp
851risk -7

In contrast, nonlinear alternatives suffer from:

(14)

* Sigmoid: %[sigmoid('yS)] =
7y - sigmoid(y.S)(1 — sigmoid(yS)) vanishes
as S — o0

» Exponential: %[675} = ~ve?5 explodes as S
increases

The constant gradient ensures stable backprop-
agation regardless of risk magnitude, critical for
safety-critical applications.

C.2 Temporal Encoding Function Design

—M:
Eitsk t))

The 1D causal convolution ¢(S
Conle(Sr(itS;M:t);W@ captures three types of

temporal risk patterns:

C.2.1 Pattern 1: Rapid Risk Escalation
Mathematical formulation:

®) (t—M)

RapidEscalation = 1 | —tisk  “risk

> n] (15)

The 1D convolution with kernel W, € R3*!
approximates the derivative by learning weights
that emphasize recent frames. Empirically, we ob-
serve learned kernels resemble [—0.5, 0, 0.5], act-
ing as discrete derivatives.

C.2.2 Pattern 2: Sustained High-Risk
Mathematical formulation:

SustainedRisk =1 | min (S, (1?k) > 7o| (16)

i€ft—Mt] "

The convolution output at position j is
>k Wylk] - Sr(ii]:k). When all Sr(ii]:k) are high and
W, > 0, the output is maximized, detecting sus-

tained risk.

C.2.3 Pattern 3: Risk Oscillation
Mathematical formulation:

(t—M:t)
risk )

Oscillation = Var(S a7n

High-frequency oscillations (e.g., rapid lane
changes) are captured when learned kernel
weights alternate in sign, similar to high-pass fil-
ters.

C24 Whyk=23?

We empirically test kernel sizes k € {1,3,5,7}:
k = 3 provides sufficient temporal receptive

field (0.1s at 30 FPS) to capture risk transitions

without over-smoothing critical escalations.

C.3 Preserving Interpretability in GRU
Fusion

C.3.1 Mechanism 1: Explicit Concept

Injection
At each time step ¢, the GRU input is:

ftattended | ‘ C(t)

input, = [ concept } € RU*K (13)

visual features  concept activations



Table 10: Concept activation comparison on a confusing negative sample (from Fig. ??(c)). CARA demonstrates

superior semantic consistency.

Model | Top Activated Concepts | Semantic Consistency

CARA Unsignaled lane merge (0.71), Pedestrian High
crossing (0.59), Sudden braking (0.55)

CRASH+CBM | Pedestrian crossing (0.78), Vehicle tailgating Medium
(0.63), Unsignaled merge (0.57)

DSTA+CBM Sudden lane drift (0.76), Motorcyclist weaving Low
(0.62), Rear-end risk (0.58)

UString+CBM | Broken taillights in rain (0.78), Blocked inter- Very Low
section (0.64), Jaywalking (0.51)

Table 11: Kernel Size Ablation

k| AP (%) mTTA (s) RS0 (s)
1| 6845 1.72 2.05
3| 70.67 1.97 2.23
5| 7021 1.89 2.18
7| 69.87 1.85 2.11

This ensures concepts are accessible before
non-linear gating transformations:

zt = o(W, -input, + U, - hy_1)

r; = o(W, -input, + U, - h;_1)

h; = tanh(W, - input, + Uy, - (r; ® hy_1))

hy=(1-2z)0h;+2 Oh

19)

Crucially, C(Ezlcept is part of input,, not derived
from h;_;, preventing concepts from being buried
in hidden abstractions.

C.3.2 Mechanism 2: Concept Consistency
Regularization

The 10ss Lconcept €nsures that even after GRU pro-
cessing, concept semantics remain aligned with
CLIP:

K

['concept = Z(l - COS(&t,ia SCLIP(FM Cz))) (20)
=1

Preventing Concept Drift. Without this regu-
larization, gradient descent may optimize concepts
to correlate with collision labels rather than main-
tain semantic meanings. We define concept drift
as:

Drift(c;,t) = 1 — cos(a™, agt®)  (21)

Empirically, models without Lconcept €xhibit
Drift > 0.5 after 10 epochs, while CARA main-
tains Drift < 0.17 throughout training.

D Loss Function Design Justification

D.1 Why CLIP Alignment?

CLIP’s visual-semantic embeddings are learned
from 400M image-text pairs, providing several ad-
vantages:

1. Task-independent semantic anchor: CLIP’s
training objective (contrastive learning on web-
scraped data) is orthogonal to collision predic-
tion, preventing collapse to task-specific short-
cuts.

2. Robustness to distribution shift: CLIP gen-
eralizes across diverse visual domains due to
massive pre-training scale.

3. Zero-shot semantic understanding: CLIP en-
codes compositional semantics (e.g., “pedes-
trian” + “crossing” — “pedestrian crossing’)
without requiring labeled examples.

Alternative considered: Using ground-truth
concept labels from human annotations. How-
ever, this requires expensive labeling (~$50/video
x 1,232 videos = $61,600) and introduces annota-
tor subjectivity.

D.2 Why Cosine Similarity?

Cosine similarity cos(a,b) = ﬁfb‘ measures se-
mantic alignment in angular space, offering:

* Scale invariance: Invariant to embedding mag-
nitude, focusing on directional alignment. This
is critical since CLIP and learned embeddings
may have different L2 norms.

* Bounded range: cos(-) € [—1, 1] provides sta-
ble gradients, unlike L2 distance which grows
unbounded.

* Alignment with CLIP training: CLIP itself
uses cosine similarity in its contrastive loss,
making it the natural metric for alignment.



Empirical comparison:

Table 12: Concept Loss Metric Comparison

Metric \ AP (%) Drift Stability
L2 distance 68.92 0.31  Unstable
Cosine sim. 70.67 0.17 Stable

KL divergence | 69.45 0.24  Moderate

D.3 Why L1 Sparsity?

Human experts identify 3-5 primary causal fac-
tors per accident (Treat et al., “Tri-Level Study of
Causes of Traffic Accidents”, 1979). L1 regular-
ization encourages similar sparse reasoning:

K
ﬁinterpretability = Z ’&t,i| (22)
=1

Effect of sparsity:

Table 13: Effect of Sparsity Regularization

A2 \ Avg. Concepts Comprehensibility
0 45.2 Very Low
0.001 28.6 Low
0.01 8.3 High
0.1 2.1 Medium

A2 = 0.01 achieves interpretability without sac-
rificing predictive performance (AP: 70.67%).

E Hyperparameter Sensitivity Analysis

E.1 Impact of Risk Amplification Factor ~

Analysis: - v < 2.0: Insufficient risk modulation,
model fails to prioritize high-risk regions ade-
quately. - v = 2.0: Achieves best interpretability-
accuracy trade-off. - v > 3.0: Noisy risk scores
amplified excessively, causing attention instability
and gradient spikes during training.

E.2 Impact of Temporal Smoothing Factor o

Analysis: - @ = 0: Raw CLIP activations
contain frame-level artifacts (motion blur, occlu-
sions), causing spurious concept activations. -
a = 0.3: Excessive smoothing delays genuine risk
escalation detection, reducing mTTA. - o = 0.7:
Filters transient noise while preserving rapid risk
changes (e.g., sudden braking). - o = 0.9: Insuffi-
cient smoothing, residual frame-to-frame jitter de-
grades attention quality.

E.3 Impact of Loss Weights \; and )\,

Optimal configuration: \; = 0.1, Ay = 0.01
achieves high CLIP alignment (0.83) and inter-
pretable sparsity (8.3 concepts/frame) without sac-
rificing AP.

F Complete Ablation Study on A3D and
CCD Datasets

This appendix provides the complete ablation
study design and results on A3D and CCD
datasets, supplementing the main analysis in Sec-
tion 2 (based on DAD dataset) to comprehensively
validate the generalization capability of CARA’s
core components.

Detailed Analysis of Component Ablation
(DAD)

The results from the main paper show that the
Concept Risk Attention (CRA) module is foun-
dational. Its removal (w/o CRA) resulted in the
largest single-component drop in accuracy and a
significant reduction in early warning capability,
confirming that concept-driven risk assessment is
central to CARA’s performance.

The Temporal Risk Attention (TRA) mod-
ule exhibits the strongest influence on early de-
tection, contributing significantly to mTTA (Mean
Time-to-Accident). This validates its effectiveness
in modeling the evolution of risk over sequential
frames and providing timely warnings. The Spa-
tial Risk Attention (SRA) provides complemen-
tary benefits, contributing by dynamically focus-
ing the model’s attention on high-risk spatial re-
gions, such as potential collision points or nearby
objects exhibiting erratic behavior.

The removal of the two core attention modules,
No Risk-Aware Attn (w/o SRA and w/o TRA),
leads to a combined AP degradation and loss in
mTTA, revealing the substantial synergy between
spatial and temporal modulation. Eliminating all
risk-aware components (No Risk Components,
removing CRA, SRA, and TRA) causes the most
dramatic collapse, bringing the model close to
baseline performance levels. This decisively vali-
dates that CARA’s complete risk perception mech-
anism is a highly integrated and necessary system.

Ablation Study Design

We design eight variant models based on the full
CARA model, covering both individual compo-
nent removal and combined component removal



Table 14: Sensitivity Analysis of v on DAD Dataset

v | AP(%) mTTA (s)

R80 (s) | Observation

0.5
1.0
2.0
3.0
5.0

68.42
69.85
70.67
70.23
68.91

1.73
1.82
1.97
1.89
1.76

2.01
2.15
2.23
2.18
2.03

Weak emphasis
Moderate

Optimal

Slight over-amplify
Unstable

Table 15: Sensitivity Analysis of o on DAD Dataset

a | AP(%) mTTA (s) R80 (s) | Observation

0.0 | 68.15 1.61 1.93
03| 69.21 1.75 2.08
0.5 | 69.87 1.83 2.16
0.7 | 70.67 1.97 2.23
09 | 69.45 1.79 2.11

No smoothing, high noise
Over-smooth, delayed response
Moderate smoothing

Optimal balance
Under-smooth, residual noise

Table 16: Grid Search for A1 and Ao

A1 X2 | AP CLIP Concepts
0.001 0.001 | 69.12 0.68 423
0.001 0.01 | 68.87 0.69 12.1
0.01 0.001 | 69.95 0.76 38.7
0.01 0.01 | 70.32 0.78 11.5

0.1 0.001 | 70.18 0.81 35.2

0.1 0.01 | 70.67 0.83 8.3

0.1 0.1 68.45 0.84 2.1

1.0 0.01 | 67.23 0.87 7.8

scenarios:

w/o CRA: Removes the Concept-driven Risk
Assessment module (including CBM), re-
placing the concept-to-risk mapping with
random risk scores.

w/o SRA: Removes spatial risk attention
modulation, retaining only standard spatial
attention (without risk score amplification on
spatial weights).

w/o TRA: Removes temporal risk attention
modulation, retaining only standard tempo-
ral attention (without capturing risk evolution
trends).

w/0 Leconcept: Removes the concept consis-
tency loss, training with only collision loss
+ sparsity loss.

W/0  Linterpretability: ~Removes the inter-
pretability loss (sparsity constraint), allowing
all concepts to be activated.

w/o Risk-Aware Attention: Simultaneously
removes SRA and TRA, retaining only CRA
and auxiliary losses.

* w/o Concept Mechanism: Simultaneously
removes CRA and Lconcept. completely strip-
ping concept-driven capability.

* w/o Risk Components: Simultaneously re-
moves CRA, SRA, and TRA, degenerating to
a risk-agnostic base model.

Analysis of Results

Consistent Trends: The results on A3D and CCD
datasets show high consistency with the main
DAD experiment conclusions. Across all datasets,
removing CRA, SRA, or TRA leads to significant
decreases in both AP and warning times (mTTA,
R80). The most severe performance degradation
occurs when components are removed in combi-
nation (e.g., No Risk Components), demonstrating
the universal necessity of CARA’s core component
design.

Dataset Characteristics: On the less complex
CCD dataset, all models achieve higher absolute
performance, and the impact of removing auxil-
iary losses on AP is relatively smaller (AAP <
0.70%). This suggests that in simpler scenar-
ios, the model’s reliance on concept alignment
and sparsity is somewhat reduced. However, re-
moving core risk perception components (CRA,
TRA) still causes the most significant performance
drops, confirming their fundamental role.

Stable Component Contribution Ranking:
The ablation experiments across datasets consis-
tently show that the contribution of Temporal Risk
Attention (TRA, measured by AAP) is consis-
tently higher than that of Spatial Risk Attention
(SRA), reaffirming the critical importance of cap-



Table 17: Complete ablation results on A3D dataset

Model Variant | AP (%) AAP mTTA(s) AmTTA R80(s) ARS0
Full Model 94.23 - 4.62 - 4.87 -

w/o CRA 9235 ]1.88 4.28 10.34 4.59 40.28
w/o SRA 9342  |0.81 4.37 10.25 4.69 J10.18
w/o TRA 92.68 |1.55 4.25 10.37 4.58 40.29
W/O Leoncept 9375 1048 455 10.07 481  10.06
W/0 Linterpretability 94.05 ]0.18 4.56 10.06 4.32 40.05
w/o Risk-Aware Attention | 91.58  |2.65 4.05 10.57 433 10.54
w/o Auxiliary Losses 93.15 ]1.08 4.38 10.24 4.67 40.20
w/o Concept Mechanism 91.82 241 3.85 10.77 422 10.65
w/o Risk Components 90.95 |3.28 3.76 10.86 4.12 10.75

Table 18: Complete ablation results on CCD dataset

Model Variant \ AP (%) AAP mTTA (s) AmTTA R80(s) ARS80
Full Model 99.35 - 4.69 - 4.81 -

w/o CRA 97.85 |1.50 4.34 40.35 4.59 40.22
w/o SRA 98.92 1043 4.52 10.17 4.73 40.08
w/o TRA 98.15  |1.20 4.32 40.37 4.60 J0.21
W/0 Leoncept 99.18  ]0.17 4.66 10.03 4.79 40.02
W/0 Linerpretability 99.28  10.07 4.67 10.02 4.80 J0.01
w/o Risk-Aware Attention | 97.45  [1.90 423 10.46 4.52 10.29
w/o Auxiliary Losses 98.65  10.70 4.50 J0.19 4.69 J0.12
w/o Concept Mechanism 97.25  ]2.10 3.96 10.73 4.29 40.52
w/o Risk Components 96.55  ]2.80 3.83 10.86 4.16 40.65

turing risk evolution trends for collision prediction
tasks.

Implementation Details. The ablation experi-
ments follow the same implementation as the main
experiments (Appendix A).

G Interpretability Visualization and
Analysis

This appendix provides complete visualization
and detailed analysis for Section 4.4, including
spatial attention dynamics, concept activation pat-
terns across scenarios, and comparative concept
quality assessment.

G.1 Spatial Attention Visualization

Figure 3 illustrates CARA’s spatial attention
mechanism across three representative scenar-
i0s. The visualization demonstrates how attention
weights dynamically shift to focus on high-risk
objects (e.g., merging vehicles in TP case, pedes-
trians in CN case) as concept-derived risk scores
evolve over time. Green bounding boxes indicate
the top-3 attended objects at each frame, reveal-
ing the model’s reasoning process through spatial
focus allocation.

G.2 Concept Activation Across Scenarios

Figure 4 provides detailed visualization of con-
cept activation patterns for the three scenarios dis-
cussed in Section 4.4. The probability curves
show model confidence over time, while concept
activation bars reveal the semantic reasoning be-
hind each prediction. Color coding distinguishes
risk concepts (red spectrum) from safety concepts
(green spectrum), enabling clear interpretation of
the decision-making process.

This section provides the full analysis of the
three representative scenarios to validate CARA’s
reasoning transparency.

* True Positive (TP) Case (Fig. 4a): The
model correctly predicts an impending colli-
sion. This prediction is grounded on a clear
semantic pattern where high-risk concepts
dominate the activation landscape: “Tail-
gating or insufficient following distance”
(weight 0.76), “Failure to yield at an in-
tersection” (0.68), and “Unsignaled lane
merge by another vehicle” (0.57). These
highly activated concepts directly correspond
to the observable scene dynamics, providing
a transparent and actionable explanation for
the risk anticipation.

* True Negative (TN) Case (Fig. 4b): This



Tailgating or insufficient following distance
Failure to yield at an intersection
Unsignaled lane merge by another vehicle
Sudden vehicle braking in dense traffic
Motorcyclist weaving through traffic
Speeding on a sharp curve

» Pedestrian crossing at non-designated areas
Clear road with no obstacles

Clear weather with dry roads

No tailgating or excessive speed

No sudden movements

Traffic lights functioning properly

No pedestrians crossing

No congestion or blockages

Clear lane markings and no obstructions
Well-maintained road with good visibility

0.76
0.68

0.57

0.52
0.48
0.44
0.33
0.20

0.

0.2 0.4 0.6
Concept Predictions

0.73
0.65

0.60

0.57
0.50
0.42
0.34
0.28

Unsignaled lane merge by another vehicle
Pedestrian crossing at non-designated areas
Sudden vehicle braking in dense traffic
Motorcyclist weaving through traffic
Speeding on a sharp curve

Clear road with no obstacles

No sudden movements

No tailgating or excessive speed

0.

0.2 0.4 0.6
Concept Predictions

0.71

0.59

0.55
0.51
0.35
0.47
0.37
0.23

0.0

0.2 0.4 0.6
Concept Predictions

Figure 4: Collision Anticipation Examples with Concept-Level Explanations. (a) True Positive: Risk concepts
dominate (Tailgating 0.76, Failure to yield 0.68, Unsignaled merge 0.57). (b) True Negative: Safety concepts
prevail (Clear weather 0.73, No tailgating 0.65, Proper lane discipline 0.60). (c) Confusing Negative: Transient
risk concepts (Unsignaled merge 0.71, Pedestrian crossing 0.59) balanced by safety concepts (Clear road 0.47,

Proper discipline 0.37), preventing false positive.

scenario demonstrates CARA’s ability to rec-
ognize safe driving conditions. The proba-
bility curve remains consistently below the
decision threshold, supported by strong acti-
vations of safety concepts: “Clear weather
with dry roads” (0.73), “No tailgating or ex-
cessive speed” (0.65), and “Proper lane dis-
cipline without sudden movements” (0.60).
This explicit identification of safety indica-
tors confirms that the model employs genuine
concept-based reasoning.

¢ Confusing Negative (CN) Case (Fig. 4c):
This is the most revealing case, where tran-
sient risk factors such as “Unsignaled lane
merge” (0.71) and “Pedestrian crossing at
non-designated areas” (0.59) briefly spike
the risk probability. Despite these concerning
signals, CARA correctly avoids a false posi-
tive by simultaneously maintaining the acti-

vation of safety concepts, including “Clear
road with no obstacles” (0.47) and “Proper
lane discipline” (0.37). This demonstrates
the model’s ability to balance competing ev-
idence, revealing a nuanced reasoning pro-
cess.

G.3 Comparative Concept Quality Analysis

To quantitatively validate CARA’s interpretabil-
ity advantage, we compare concept activation pat-
terns across all methods on the same confusing
negative sample. CARA demonstrates high se-
mantic consistency—activating concepts directly
related to observable scene dynamics (e.g., lane
merge, pedestrian movement)—while exhibiting
superior sparsity with only 8.3 active concepts
per scenario versus 15+ for post-hoc CBM vari-
ants. In contrast, post-hoc integration shows crit-
ical flaws, activating spurious or scene-irrelevant



Unsignaled lane merge by another vehicle 0.71 Pedestrian crossing at non-designated areas 0.78
Pedestrian crossing at non-designated areas 0.59 Vehicle tailgating on a highway 0.63
Sudden vehicle braking in dense traffic 0.55 Unsignaled lane merge by another vehicle 0.57
Motorcyclist weaving through traffic 0.51 Sudden vehicle braking in dense traffic 0.52
Speeding on a sharp curve 0.35 Roadside hazard (fallen branches) 0.35
Clear road with no obstacles 0.47 Speeding on a sharp curve 0.24
No sudden movements 0.37 Clear road with no obstacles 0.42
No tailgating or excessive speed 0.23 No pedestrians crossing 0.17
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Concept Predictions Concept Predictions
Sudden lane drift by a nearby vehicle 0.76 Vehicle blocking an intersection in traffic 0.78
Motorcyclist weaving through traffic 0.62 Vehicle with broken taillights driving in rain 0.64
Rear-end collision risk due to sudden stop 0.58 Pedestrian jaywalking across a busy road 0.51
Animals crossing the road unexpectedly 0.51 Vehicle driving in reverse 0.48
Vehicle accelerating unexpectedly in traffic 0.39 Snow on the road causing traction loss 0.39
Clear weather with dry roads 0.48 Large puddles causing hydroplaning risk 0.35
Clear lane markings and no obstructions 0.37 Cyclist riding against traffic 0.22
Traffic lights functioning properly 0.33 Traffic lights functioning properly 0.30
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Concept Predictions

Concept Predictions

Figure 5: Comparative Concept Activation on Confusing Negative Sample. Visualization contrasts top-8 ac-
tivated concepts by CARA against post-hoc CBM variants (CRASH+CBM, DSTA+CBM, UString+CBM) on
the same ambiguous scene. CARA exhibits high semantic consistency by focusing on direct risk factors (e.g.,
Unsignaled merge), while CBM baselines show irrelevant or spurious activations (e.g., ’Broken taillights in rain’

by UString+CBM).

Table 19: Detailed concept activation comparison on confusing negative sample. CARA demonstrates superior

semantic consistency and sparsity.

Model Top-8 Activated Concepts (with weights)

| Semantic Consistency | Total Active

CARA

Unsignaled lane merge (0.71), Pedestrian crossing at non-designated
area (0.59), Sudden braking event (0.55), Clear road with no obstacles
(0.47), Moderate traffic density (0.42), Proper lane discipline (0.37),
Vehicle decelerating smoothly (0.34), Dry road surface (0.31)

High (8/8) 8

CRASH+CBM

Pedestrian near roadway (0.78), Vehicle following too closely (0.63),
Unsignaled lane change (0.57), Intersection approach (0.49), Moderate
speed (0.45), Clear visibility (0.41), Urban environment (0.38), Traffic
signal present (0.32)

Medium (6/8)

12

DSTA+CBM

Sudden lane drift detected (0.76), Motorcyclist weaving through lanes
(0.62), Rear-end collision risk (0.58), Heavy traffic conditions (0.51),
Poor lane marking visibility (0.47), Vehicle accelerating rapidly (0.43),
Wet road surface (0.39), Sharp curve ahead (0.35)

Low (3/8)

18

UString+CBM

Vehicle with broken taillights driving in rain (0.78), Blocked inter-
section ahead (0.64), Pedestrian jaywalking (0.51), Construction zone
present (0.48), Emergency vehicle approaching (0.45), Double-parked

Very Low (1/8)

23

vehicle (0.42), School zone active (0.38), Ice on road surface (0.34)

concepts that undermine interpretability (as de-
tailed in Table 19). Critically, CARA’s concept ac-
tivations provide actionable explanations: users
can trace risk assessment to specific semantic fac-
tors, enabling targeted model refinement through
expert feedback.

Figure 5 and Table 19 present comprehensive
comparison of concept activation quality across all
methods. The visualization uses color intensity
to indicate activation strength, with red highlight-
ing spurious or scene-irrelevant concepts. CARA’s
activation pattern shows clear semantic coherence
with only 8 active concepts, all directly related to
observable scene elements. In contrast, post-hoc

CBM variants activate 12-23 concepts with signifi-
cant semantic noise, demonstrating the superiority
of CARA’s native concept integration approach.
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